Browse > Article
http://dx.doi.org/10.4014/jmb.2101.01003

Efficient Constitutive Expression of Cellulolytic Enzymes in Penicillium oxalicum for Improved Efficiency of Lignocellulose Degradation  

Waghmare, Pankajkumar Ramdas (State Key Laboratory of Microbial Technology, Shandong University)
Waghmare, Pratima Pankajkumar (State Key Laboratory of Microbial Technology, Shandong University)
Gao, Liwei (State Key Laboratory of Microbial Technology, Shandong University)
Sun, Wan (State Key Laboratory of Microbial Technology, Shandong University)
Qin, Yuqi (State Key Laboratory of Microbial Technology, Shandong University)
Liu, Guodong (State Key Laboratory of Microbial Technology, Shandong University)
Qu, Yinbo (State Key Laboratory of Microbial Technology, Shandong University)
Publication Information
Journal of Microbiology and Biotechnology / v.31, no.5, 2021 , pp. 740-746 More about this Journal
Abstract
Efficient cellulolytic enzyme production is important for the development of lignocellulose-degrading enzyme mixtures. However, purification of cellulases from their native hosts is time- and labor-consuming. In this study, a constitutive expression system was developed in Penicillium oxalicum for the secreted production of proteins. Using a constitutive polyubiquitin gene promoter and cultivating with glucose as the sole carbon source, nine cellulolytic enzymes of different origins with relatively high purity were produced within 48 h. When supplemented to a commercial cellulase preparation, cellobiohydrolase I from P. funiculosum and cellobiohydrolase II from Talaromyces verruculosus showed remarkable enhancing effects on the hydrolysis of steam-exploded corn stover. Additionally, a synergistic effect was observed for these two cellobiohydrolases during the hydrolysis. Taken together, the constitutive expression system provides a convenient tool for the production of cellulolytic enzymes, which is expected to be useful in the development of highly efficient lignocellulose-degrading enzyme mixtures.
Keywords
Penicillium oxalicum; lignocellulose; constitutive expression system; cellulase; enzymatic conversion;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kumar A, Gautam A, Dutt D. 2016. Biotechnological transformation of lignocellulosic biomass in to industrial products: an overview. Adv. Biosci. Biotechnol. 07: 149-168.   DOI
2 Paulova L, Patakova P, Branska B, Rychtera M, Melzoch K. 2015. Lignocellulosic ethanol: Technology design and its impact on process efficiency. Biotechnol. Adv. 33: 1091-1107.   DOI
3 Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, et al. 2007. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315: 804-807.   DOI
4 Balan V. 2014. Current challenges in commercially producing biofuels from lignocellulosic biomass. ISRN Biotechnol. 2014: 463074.   DOI
5 Karimi K, Taherzadeh MJ. 2016. A critical review of analytical methods in pretreatment of lignocelluloses: Composition, imaging, and crystallinity. Bioresour. Technol. 200: 1008-1018.   DOI
6 Burchard W, Schulz L. 1995. Functionality of the β(1,4) glycosidic linkage in polysaccharides. Macromol. Symp. 99: 57-69.   DOI
7 Warden AC, Little BA, Haritos VS. 2011. A cellular automaton model of crystalline cellulose hydrolysis by cellulases. Biotechnol. Biofuels 4: 39.   DOI
8 Hemsworth GR, Johnston EM, Davies GJ, Walton PH. 2015. Lytic polysaccharide monooxygenases in biomass conversion. Trends Biotechnol. 33: 747-761.   DOI
9 Merino ST, Cherry J. 2007. Progress and challenges in enzyme development for biomass utilization. Adv. Biochem. Eng. Biotechnol.108: 95-120.
10 Voutilainen SP, Puranen T, Siika-Aho M, Lappalainen A, Alapuranen M, Kallio J, et al. 2008. Cloning, expression, and characterization of novel thermostable family 7 cellobiohydrolases. Biotechnol. Bioeng. 101: 515-528.   DOI
11 Taylor LE, Knott BC, Baker JO, Alahuhta PM, Hobdey SE, Linger JG, et al. 2018. Engineering enhanced cellobiohydrolase activity. Nat. Commun. 9: 1186.   DOI
12 Percival Zhang YH, Himmel ME, Mielenz JR. 2006. Outlook for cellulase improvement: Screening and selection strategies. Biotechnol. Adv. 24: 452-481.   DOI
13 Jeoh T, Michener W, Himmel ME, Decker SR, Adney WS. 2008. Implications of cellobiohydrolase glycosylation for use in biomass conversion. Biotechnol. Biofuels 1: 10.   DOI
14 Hong J, Tamaki H, Yamamoto K, Kumagai H. 2003. Cloning of a gene encoding a thermo-stable endo-b-1,4-glucanase from Thermoascus aurantiacus and its expression in yeast. Biotechnol. Lett. 25: 657-661.   DOI
15 Szijarto N, Horan E, Zhang J, Puranen T, Siika-aho M, Viikari L. 2011. Thermostable endoglucanases in the liquefaction of hydrothermally pretreated wheat straw. Biotechnol. Biofuels 4: 2.   DOI
16 Badino SF, Christensen SJ, Kari J, Windahl MS, Hvidt S, Borch K, et al. 2017. Exo-exo synergy between Cel6A and Cel7A from Hypocrea jecorina: Role of carbohydrate binding module and the endo-lytic character of the enzymes. Biotechnol. Bioeng. 114: 1639-1647.   DOI
17 Qin Y, Zheng K, Liu G, Chen M, Qu Y. 2013. Improved cellulolytic efficacy in Penicilium decumbens via heterologous expression of Hypocrea jecorina endoglucanase II. Arch. Biol. Sci. 65: 305-314.   DOI
18 Gao L, Li Z, Xia C, Qu Y, Liu M, Yang P, et al. 2017. Combining manipulation of transcription factors and overexpression of the target genes to enhance lignocellulolytic enzyme production in Penicillium oxalicum. Biotechnol. Biofuels 10: 100.   DOI
19 Brown NA, Ries LNA, Goldman GH. 2014. How nutritional status signalling coordinates metabolism and lignocellulolytic enzyme secretion. Fungal Genet. Biol. 72: 48-63.   DOI
20 Hu Y, Xue H, Liu G, Song X, Qu Y. 2015. Efficient production and evaluation of lignocellulolytic enzymes using a constitutive protein expression system in Penicillium oxalicum. J. Ind. Microbiol. Biotechnol. 42: 877-887.   DOI
21 Vaaje-Kolstad G, Forsberg Z, Loose JS, Bissaro B, Eijsink VG. 2017. Structural diversity of lytic polysaccharide monooxygenases. Curr. Opin. Struct. Biol. 44: 67-76.   DOI
22 Gaber Y, Rashad B, Hussein R, Abdelgawad M, Ali NS, Dishisha T, et al. 2020. Heterologous expression of lytic polysaccharide monooxygenases (LPMOs). Biotechnol. Adv. 43: 107583.   DOI
23 Greene ER, Himmel ME, Beckham GT, Tan ZP. 2015. Glycosylation of cellulases: Engineering better enzymes for biofuels. Adv. Carbohydr. Chem. Biochem. 72: 63-112.   DOI
24 Song W, Han X, Qian Y, Liu G, Yao G, Zhong Y, et al. 2016. Proteomic analysis of the biomass hydrolytic potentials of Penicillium oxalicum lignocellulolytic enzyme system. Biotechnol. Biofuels 9: 68.   DOI
25 Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, et al. 2008. Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat. Biotechnol. 26: 553-560.   DOI
26 Liu G, Qin Y, Li Z, Qu Y. 2013. Development of highly efficient, low-cost lignocellulolytic enzyme systems in the post-genomic era. Biotechnol. Adv. 31: 962-975.   DOI
27 Stals I, Sandra K, Geysens S, Contreras R, Van Beeumen J, Claeyssens M. 2004. Factors influencing glycosylation of Trichoderma reesei cellulases. I: Postsecretorial changes of the O- and N-glycosylation pattern of Cel7A. Glycobiology 14: 713-724.   DOI
28 Fagerstam LG, Pettersson LG. 1980. The 1.4-β-glucan cellobiohydrolases of Trichoderma reesei QM 9414. FEBS Lett. 119: 97-100.   DOI
29 Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. 2014. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42: D490-D495.   DOI
30 Billard H, Faraj A, Lopes Ferreira N, Menir S, Heiss-Blanquet S. 2012. Optimization of a synthetic mixture composed of major Trichoderma reesei enzymes for the hydrolysis of steam-exploded wheat straw. Biotechnol. Biofuels 5: 9.   DOI
31 Gusakov AV, Salanovich TN, Antonov AI, Ustinov BB, Okunev ON, Burlingame R, et al. 2007. Design of highly efficient cellulase mixtures for enzymatic hydrolysis of cellulose. Biotechnol. Bioeng. 97: 1028-1038.   DOI
32 Harris PV, Welner D, McFarland KC, Re E, Navarro Poulsen JC, Brown K, et al. 2010. Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry. 49: 3305-3316.   DOI
33 Linger JG, Taylor LE, Baker JO, Vander Wall T, Hobdey SE, Podkaminer K, et al. 2015. A constitutive expression system for glycosyl hydrolase family 7 cellobiohydrolases in Hypocrea jecorina. Biotechnol. Biofuels 8: 45.   DOI
34 Li S, Li G, Zhang L, Zhou Z, Han B, Hou W, et al. 2013. A demonstration study of ethanol production from sweet sorghum stems with advanced solid state fermentation technology. Appl. Energy 102: 260-265.   DOI
35 Ma L, Zhang J, Zou G, Wang C, Zhou Z. 2011. Improvement of cellulase activity in Trichoderma reesei by heterologous expression of a β-glucosidase gene from Penicillium decumbens. Enzyme Microb. Technol. 49: 366-371.   DOI
36 Berka RM, Grigoriev IV, Otillar R, Salamov A, Grimwood J, Reid I, et al. 2011. Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris. Nat. Biotechnol. 29: 922-927.   DOI
37 Liu G, Zhang L, Wei X, Zou G, Qin Y, Ma L, et al. 2013. Genomic and secretomic analyses reveal unique features of the lignocellulolytic enzyme system of Penicillium decumbens. PLoS One 8: e55185.   DOI
38 Dillon AJ, Bettio M, Pozzan FG, Andrighetti T, Camassola M. 2011. A new Penicillium echinulatum strain with faster cellulase secretion obtained using hydrogen peroxide mutagenesis and screening with 2-deoxyglucose. J. Appl. Microbiol. 111: 48-53.   DOI
39 Gusakov AV. 2011. Alternatives to Trichoderma reesei in biofuel production. Trends Biotechnol. 29: 419-425.   DOI
40 Zhang Z, Liu J-L, Lan J-Y, Duan C-J, Ma Q-S, Feng J-X. 2014. Predominance of Trichoderma and Penicillium in cellulolytic aerobic filamentous fungi from subtropical and tropical forests in China, and their use in finding highly efficient β-glucosidase. Biotechnol. Biofuels 7: 107.   DOI
41 Liu K, Lin X, Yue J, Li X, Fang X, Zhu M, et al. 2010. High concentration ethanol production from corncob residues by fed-batch strategy. Bioresour. Technol. 101: 4952-4958.   DOI
42 Du J, Zhang X, Li X, Zhao J, Liu G, Gao B, et al. 2018. The cellulose binding region in Trichoderma reesei cellobiohydrolase I has a higher capacity in improving crystalline cellulose degradation than that of Penicillium oxalicum. Bioresour. Technol. 266: 19-25.   DOI
43 Morozova VV, Gusakov AV, Andrianov RM, Pravilnikov AG, Osipov DO, Sinitsyn AP. 2010. Cellulases of Penicillium verruculosum. Biotechnol. J. 5: 871-880.   DOI
44 Ma S, Preims M, Piumi F, Kappel L, Seiboth B, Record E, et al. 2017. Molecular and catalytic properties of fungal extracellular cellobiose dehydrogenase produced in prokaryotic and eukaryotic expression systems. Microb. Cell Fact. 16: 37.   DOI
45 Arnthong J, Siamphan C, Chuaseeharonnachai C, Boonyuen N, Suwannarangsee S. 2020. Towards a miniaturized culture screening for cellulolytic fungi and their agricultural lignocellulosic degradation. J. Microbiol. Biotechnol. 30: 1670-1679.   DOI