• Title/Summary/Keyword: microbial control

Search Result 1,771, Processing Time 0.029 seconds

Microbial Modeling in Quantitative Risk Assessment for the Hazard Analysis and Critical Control Point (HACCP) System: A Review

  • Min, Sea-Cheol;Choi, Young-Jin
    • Food Science and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.279-293
    • /
    • 2009
  • Quantitative risk assessments are related to implementing hazard analysis and critical control points (HACCP) by its potential involvement in identifying critical control points (CCPs), validating critical limits at a CCP, enabling rational designs of new processes, and products to meet required level of safety, and evaluating processing operations for verification procedures. The quantitative risk assessment is becoming a standard research tool which provides useful predictions and analyses on microbial risks and, thus, a valuable aid in implementing a HACCP system. This paper provides a review of microbial modeling in quantitative risk assessments, which can be applied to HACCP systems.

The Effect of Dissolved Oxygen on Microbial Transglutaminase production by Streptoverticillium morbaraense (용존산소 농도 조절이 미생물유래 Transglutaminase 생산에 미치는 영향)

  • 유재수;전계택;정용섭
    • KSBB Journal
    • /
    • v.18 no.2
    • /
    • pp.155-160
    • /
    • 2003
  • The effect of dissolved oxygen(DO) on microbial transglutaminase(mTG) production by Streptoverticillium morbaraense was studied in on-line computer controlled fermentation system. In order to control dissolved oxygen during fermentation, the agitation speed and aeration rate of 2.5 L fermenter ranged from 260 to 360 rpm and 0.3 to 3.9 L/min, respectively. The maximum microbial transglutaminase production was obtained at controlled 20% of dissolved oxygen among the various dissolved oxygen controlled batch cultures tested. The production of microbial transglutaminase at controlled 20% of dissolved oxygen was about 2.12 U/mL which was 1.1 times higher than that obtained in batch culture without control of dissolved oxygen. Also, the highest microbial transglutaminase production was obtained in fed-batch cultures in which dissolved oxygen was controlled at 20%, and it was improved almost 1.3 times in comparison with that without control of dissolved oxygen. Maximal dry cell weight and microbial transglutaminase production were 13.2 g/L and 2.6 U/mL, respectively. Finally, it was also found that fed-batch fermentation at controlled 20% of dissolved oxygen showed a good performance for the microbial transglutaminase production by on-line computer controlled fermentation system which may be generally applicable to other microbial cultures.

Effect of Microbial Product on Microorganisms in Soil and Growth of Chinese Cabbage (미생물제제 처리가 토양 미생물상의 변화 및 배추의 생육에 미치는 영향)

  • Seok, Woon-Young;Oh, Ju-Sung;Kim, Doh-Hoon;Chung, Won-Bok;Jeong, Soon-Jae
    • Korean Journal of Organic Agriculture
    • /
    • v.12 no.4
    • /
    • pp.399-409
    • /
    • 2004
  • This study was conducted to investigate the effect of different concentrations of microbial products on growth of chinese cabbage and microorganisms in soil. Two different levels of microbial products, such as 50 times and 100 times diluted solutions of chitosan, wood vinegar and EM activity liquid, were treated for foliar application. the results were summarized as follows : Among foliar applications of microbial products, 100 times diluted solution of chitosan was effective on growth of chinese cabbage comparing to other levels of dilutions and untreated control plot. The number of microorganism in the soil tended to increase under the treatment of microbial products compared to control plot. Especially, the numbers of the bacteria and actinomycetes were estimated $73.67{\times}10^3$ CFU/g and $34.00{\times}10^3$ CFU/g, respectively, under the treatment of 100 times diluted solution of chitosan.

  • PDF

Efficacy of Supplemental Microbial Phytase on Laying Performance and Phosphorus Utilization II. Effect of Microbial Phytase at Different Phosphorus Levels and High Calcium Content on Laying Performance and Phosphorus Utilization (산란생산성과 인 이용성에 대한 Microbial Phytase의 첨가 효과 II. 무기태인 수주닝 다르고 칼슘수준이 높은 사료에 Microbial Phytase 첨가가 산란성 및 인 이용성에 미치는 영향)

  • 김상호;유동조;이상진;강보석;서옥석;최철환;이원준;류경선
    • Korean Journal of Poultry Science
    • /
    • v.27 no.1
    • /
    • pp.25-30
    • /
    • 2000
  • Present study was conducted to investigate effects of microbial phytase in laying hen diets on utilization of non-phytate phosphorus(NPP) whose levels were adjusted to be adequate or lower than that of NRC requirements. Birds of control roup were fed a diet containing 0.275% NPP and 3.4% Ca, satisfying the NRC(1994) feeding standard. bird on T1, T2 and T3 were allowed to eat diets containing NPP at 100, 80 and 60%, respectively, of Control group, and 4.0% Ca level along with a microbial phytase added at a level of 300 DPU. Three hundred and sixty, ISA Brown layers, 23-week-old, divided into four treatment groups with three replications per treatment and 30 layers per replication were fed the diets for 12 weeks. Levels of feed intake were not different among the groups, The egg mass/feed intake ratio appeared better in T2 group by about 8%, though without a statistical significance, compared to that of control. Egg production fate tended to be improved over the control group by feeding the 100%(T1) and 80%(T2) NPP diets added with phytase, with a significant difference for T2(p<0.05). Mean egg weight and egg shell quality, measured by breaking strength and thickness of the egg shell, of the T2 group tended to show numerically better, without a significance than those of control. Furthermore, birds of the T2 group showed higher calcium and phosphorus contents in tibia by about 9%(p<0.05) than the control. Overall performances of birds in T1 appeared better than those of control, but tended to be lower than those of the T2. The birds in T3 performed similar to the those of the other dietary groups except the relatively low tibia calcium level. In conclusion, the results of this study suggest that supplementation of microbial phytase at a level of 300 DPU was effective to spare about 20% of NPP in laying hen diets without any adverse effects on production performances and bone quality.

  • PDF

Relationship between Plant Protection Rate and Coefficient of Variation of Microbial Products for Ginseng Cultivation (인삼재배용 미생물 제품의 식물보호율과 변이계수와의 관계)

  • Lee, Byung-Dae;Park, Hoon
    • Journal of Ginseng Research
    • /
    • v.33 no.2
    • /
    • pp.127-131
    • /
    • 2009
  • The plant protection rate of the marketed microbial products for ginseng cultivation was investigated against Rhizoctoina solani and Pythium sp. in a seedling pot experiment. A significant difference was found among the mean plant protection rates (Pm) of the microbial products, including Tolclofos-methyl (Rhizolex). The best microbial product, C-ISR2, showed a 33% and 33.6% net Pm (total Pm-control Pm) in the two tests against Rhizoctonia solani. In one test with a 58.6% control plot Pm, the total pm was 91.6%, indicating that plant protection can be done only with a microbial product in a well-conditioned field. The net Pm of C-ISR2 against Pythium sp. was 26.4%. The net Pm of a microbial product against a pathogen seems to be fixed. A significant negative linear correlation was found between the Pm and the coefficient of variation (CV) of the protection rate in all the three experiments. This indicates that the protection processes of control, microbial products, and chemical pesticides are in the same system. Pm was only dependent on CV, probably due to each seedling's microenvironment. In the linear correlation equation between the Pm and the CV of the microbial products and the control plot, the intercept of the vertical axis will be the theoretical Pm when CV is zero.

Effects of Organic Matters Decomposed by Microbial Activity on Yield of Chard under Protected Cultivation (미생물 유기질비료의 시용이 근대의 수량에 미치는 영향)

  • 김경제
    • Korean Journal of Organic Agriculture
    • /
    • v.8 no.3
    • /
    • pp.91-98
    • /
    • 2000
  • This study was conducted to investigate the effects of microbial fertilizers on the yields of chard, chemical components of plant and soil, and the microbial floras. Six microbial fertilizers, MPK+Husk+Palma, Husk+palma, MPK+Compost, Compost, Bio livestock cattle system (BLCS) cattle dropping, and Tomi, were used. The yield of chard in six microbial fertilizer treatments was higher than that of control. The BLCS cattle dropping treatment showed the highest yield of chard among six microbial fertilizer treatments. Only one component, MgO in chard was increased with all treatments compared with control, Two components, K and Mg, in soil were increased with Tomi treatment. The number of total bacteria and bacillus was increased in soil that treated with Tomi, Husk+palma, and MPK+Husk+Palma. The number of actinomycetes and fungi was also increased with Tomi treatment. It appears that the microbial fertilizers increase the yield of chard by forming the useful microbial floras.

  • PDF

Analysis of Soil Properties and Microbial Communities for Mine Soil Vegetation (폐광산지역 토양 식생복원 과정 내 토양특성 및 미생물 군집 변화 분석)

  • Park, Min-Jeong;Yoon, Min-Ho;Nam, In-Hyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.3
    • /
    • pp.83-91
    • /
    • 2015
  • Mine soil contamination by high levels of metal ions that prevents the successful vegetation poses a serious problem. In the study presented here, we used the microbial biocatalyst of urease producing bacterium Sporosarcina pasteurii or plant extract based BioNeutro-GEM (BNG) agent. The ability of the biocatalysts to bioremediate contaminated soil from abandoned mine was examined by solid-state composting vegetation under field conditions. Treatment of mine soil with the 2 biocatalysts for 5 months resulted in pH increase and electric conductivity reduction compared to untreated control. Further analyses revealed that the microbial catalysts also promoted the root and shoot growth to the untreated control during the vegetation treatments. After the Sporosarcina pasteurii or plant extract based BNG treatment, the microbial community change was monitored by culture-independent pyrosequencing. These results demonstrate that the microbial biocatalysts could potentially be used in the soil bioremediation from mine-impacted area.

The Effect Estimation of Heavy Metals on the Microbial Activity during Leaf Litter Decomposition (낙엽분해동안 미생물 활성에 미치는 중금속의 영향 추정)

  • Shim, Jae-Kuk;Shin, Jin-Ho;Yang, Keum-Chul
    • Korean Journal of Environment and Ecology
    • /
    • v.25 no.6
    • /
    • pp.887-892
    • /
    • 2011
  • This study was to find out influence of heavy metal concentration in plant on microbial activities during decomposition of Artenmisia princeps var. orientalis and Equisetum arvense collected from an abandoned mine and control site in Cheongyang-gun Chungcheongnam-do. Microbial respiration rate showed the highest value at the time of the first collection, and then tended to decline over time. The highest microbial respiration rate appeared in leaf litters with low heavy metal contents, and A. princeps var. orientalis and E. arvense collected and decomposed at the control site showed the fastest decomposition rate. For both A. princeps var. orientalis and E. arvense, litters with low heavy metal content appeared to have higher microbial biomass. There was apparent quantitative correlation between decomposition rate and cumulative respiration rate of leaf litters, and between decomposition rate and microbial biomass of leaf litters. Thus, the study result showed that leaf litter with higher heavy metal content had a negative impacts on the growth and activity of microbial decomposer during decomposition processes.

Effects of Microbial feed Additive and vitamin-C as an Alternative to Antibiotic on Growth Performances and Carcass Characteristics of Meat Cows (항생제 대체제로서 미생물배양액 및 vitamin-C 급여가 육우의 증체 및 도체형질에 미치는 영향)

  • Nam, In-Sik;Han, Chang-Su;Ahn, Jong-Ho
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.3
    • /
    • pp.523-534
    • /
    • 2015
  • Twenty four Holstein steers (average body weight $714{\pm}13.60kg$) were used in this experiment to determine the effect of supplementing of microbial culture and coated vitamin-C on growth performances and carcass characteristics in finishing Holstein steers. Holstein steers were randomly assigned to feeding groups of control group (Con, 12 kg of basal diet/head/day), microbial culture group (MC, 12 kg of basal diet + 30 g of microbial culture/head/day) and coated vitamin-C group (CVC, 12 kg of basal diet + 10 g of coated vitamin-C/head/day). MC and CVC groups were higher in ADG compared to control (P<0.05). FCR was also lower in MC and CVC groups than control group (P<0.05). Back fat thickness, rib-eye area, marbling score, meat color and yield index were not changed by supplementing microbial culture and coated vitamin-C. MC group was higher for maturity compared to control and CVC group (P<0.05). CVC group was higher for fat color compared to control and MC group (P<0.05). Based on the results obtained from the current study, supplementation of microbial culture and coated vitamin-C as an alternative to antibiotic might increase growth performances and enhance carcass characteristics in finishing Holstein steers. However, more studies are needed to find out the optimum supplementing period of microbial culture or coated vitamin-C for high quality meat production from Holstein steers.