The Effect of Dissolved Oxygen on Microbial Transglutaminase production by Streptoverticillium morbaraense

용존산소 농도 조절이 미생물유래 Transglutaminase 생산에 미치는 영향

  • 유재수 (전북대학교 농과대학 응용생물공학부) ;
  • 전계택 (강원대학교 자연과학대학 생명과학부) ;
  • 정용섭 (전북대학교 농과대학 응용생물공학부)
  • Published : 2003.04.01

Abstract

The effect of dissolved oxygen(DO) on microbial transglutaminase(mTG) production by Streptoverticillium morbaraense was studied in on-line computer controlled fermentation system. In order to control dissolved oxygen during fermentation, the agitation speed and aeration rate of 2.5 L fermenter ranged from 260 to 360 rpm and 0.3 to 3.9 L/min, respectively. The maximum microbial transglutaminase production was obtained at controlled 20% of dissolved oxygen among the various dissolved oxygen controlled batch cultures tested. The production of microbial transglutaminase at controlled 20% of dissolved oxygen was about 2.12 U/mL which was 1.1 times higher than that obtained in batch culture without control of dissolved oxygen. Also, the highest microbial transglutaminase production was obtained in fed-batch cultures in which dissolved oxygen was controlled at 20%, and it was improved almost 1.3 times in comparison with that without control of dissolved oxygen. Maximal dry cell weight and microbial transglutaminase production were 13.2 g/L and 2.6 U/mL, respectively. Finally, it was also found that fed-batch fermentation at controlled 20% of dissolved oxygen showed a good performance for the microbial transglutaminase production by on-line computer controlled fermentation system which may be generally applicable to other microbial cultures.

Streptoverticillium morbaraene로부터 미생물 유래 transglutaminase 생산을 위하여 최적의 용존산소 농도를 구명하였다. 용존산소는 용존산소 농도 자동 조절 시스템에 의해 조절되었다. 발효 중 용존산소 농도 조절을 위하여 통기속도는 0.3-3.9 L/min, 교반속도는 260-360 rpm으로 각각 범위를 설정하였다. 용존산소 농도를 조절한 다양한 회분식 배양에서 용존산소가 20%일 때 최대 미생물유래 transgiutaminase 생산이 가능하였다. 최분배양에서 용존산소 농도를 20%로 조절한 경우 미생물유래 transglutaminase 생산은 2.12 U/mL이었고, 용존산소를 조절하지 않은 회분식 배양의 미생물유래 transglutaminase 생산보다 1.1배 향상되었다. 역시 가장 높은 미생물유래 transglutaminase 생산은 용존산소를 20%로 조절한 유가식 배양에서 가능하였으며, 용존산소를 조절하지 않은 회분식 배양의 미생물유래 transglutaminase 생산에 비교해서 1.3배 증가하였다. 최대 건조균체량과 미생물유래 transglutaminase 생산은 각각 13.2 g/L와 2.6 U/mL이었다. 용존산소를 20%로 용존산소 농도 자동 조절 시스템에 의해 조절한 유가식 배양은 미생물유래 transgiutaminase 생산에 적절하였으며 다른 미생물 배양에도 적용할 수 있을 것으로 판단된다.

Keywords

References

  1. Biosci. Biotechnol. Biochem. v.58 Purification and characterization of a tissue-type transglutaminase from red sea bream(Pagrus Major) Yasueda, H.;Y. Kumazawa;M. Motoki https://doi.org/10.1271/bbb.58.2041
  2. Agric. Biol. Chem. v.53 no.10 Purification and characteristics of a novel transglutaminase derived from microorganism Ando, H.;M. Adachi;K. Umeda;A. Matssura;M. Nonaka;R. Tanaka;M. Motoki https://doi.org/10.1271/bbb1961.53.2613
  3. Biochem. J. v.299 A rapid and simple method for the purification of transglutaminase from Streptoverticillum morbarense Berber, U.;U. Jucknischke;S. Putzien;H. L. Fuchsbauer https://doi.org/10.1042/bj2990825
  4. Shouhing Kougok v.12 Study of new protein ingredient by transglutaminase Somet, K. A
  5. Biotechnology for Improved Foods and Flavors(ACS Symposium Series 637) The usefulness of transglutaminase for food processing Kuraishi, C.;J. Sakamoto;T. Soeda
  6. Fisheries Sci. v.62 Determination of ε-(γ-glutamyl)lysine in several fish eggs and muscle proteins Kumazwa, Y.;H. Sakamoto;H. Kawauiri;M. Motoki
  7. Food Sci. Technol. v.9 Transglutaminase and its use for food processing Motoki, M.;K. Seguro https://doi.org/10.1016/S0924-2244(98)00038-7
  8. Nippon Shokuhin Kaga. Kogku Kaishi v.43 Strength enhancement by addition of microbial transglutaminase during chinese noodle processing Sakamoto, H.;K. Yamazaki;C. Kaga;Y. Yamamoto;R. Ito;Y. Kurosawa https://doi.org/10.3136/nskkk.43.598
  9. Enz. Microb. Technol. v.18 Oxygen transfer conditions in the productin of alpha-amylase by Bacillus amyloliquefaciens Milner, J. A.;D. J. Martin;A. Smith https://doi.org/10.1016/0141-0229(95)00155-7
  10. Biotechnol. Bioeng. v.8 Dissolved oxygen measurements in pilot and production-scale novobiocin fermentation Steel, M. R.;W. D. Maxon https://doi.org/10.1002/bit.260080109
  11. Process Biochem. v.18 Problems of mass and momentum transfer in large fermentors Vadar, F.
  12. Principles of fermentatin technolgy, (2nd ed.) Stanbury, P. F.;A. Whitaker;S. J. Hall
  13. Enz. Microb. Technol. v.14 Influence of dissolved oxygen concentration on the biosynthesis of cephalosporin Zhou, W.;K. Holzhauer-Rieger;M. Dors;K. Schugerl https://doi.org/10.1016/0141-0229(92)90103-U
  14. Kor. J. Appl. Microbiol. Biotechnol. v.28 no.5 Effect and development of automatic control of dissolved oxygen on growth of phellinus linteus WI-001 Kim J. L.;H. K. Kwon;G. T. Chin;K. K. Lee
  15. Biopro. Eng. v.22 Understanding the morphology Pazouki, M.;T. Panda https://doi.org/10.1007/s004490050022
  16. Biotechnol. Bioeng. v.35 Morphological measurements on filamentous microorganism by fully automatic image analysis Packer, H. L.;C. R. Thomas https://doi.org/10.1002/bit.260350904
  17. Adv. Biochem. Eng. Biotechnol. Modeling the growth of filamentous fungi Nielsen, J
  18. Biotechnol. Prog. v.14 Influence of morphology on product formation in Aspergillus awamori during submerged fermentations Claus, L. Johansen.;L. Coolen;J. H. Hunik https://doi.org/10.1021/bp980014x
  19. Biotechnol. Bioeng. v.57 Agitator speed and dissolved oxygen effects in xanthan fermentations Amanullah, a.;B. Tuttiett;A. W. Nienow https://doi.org/10.1002/(SICI)1097-0290(19980120)57:2<198::AID-BIT8>3.0.CO;2-I
  20. Biotechnol. Tech. v.11 Dissolved oxygen concentration controlled feeding of substrate into Kluyveromyces fragilis culture Barberis. S. E.;R. F. Segova https://doi.org/10.1023/A:1018421123983
  21. J. Ferment. Bioeng. v.79 no.4 Effect of dissolved oxygen and pH on moranoline(1-Deoxynojirimycin) fermentation by Streptomyces lavendulae Masahiko, K.;T. Masashi;E. Yohji https://doi.org/10.1016/0922-338X(95)94004-B
  22. J. Biosci. Bioeng. v.88 no.2 Effecto of pH and dissolved oxygen on cellulose production by Acetobacter xylinum BRC5 in agitated culture Hwang, J. L.;Y. K. Yang;J. K. Hwang;Y. R. Pyun;Y. S. Kim https://doi.org/10.1016/S1389-1723(99)80199-6
  23. Transglutaminase Folk, J. E
  24. A Practical Guide to Enzymology Suelter, C. H.
  25. Anal. Chem. v.31 Dinitrosalicylic acid reagent for determination for reducing sugar Miller, G. L. https://doi.org/10.1021/ac60147a030
  26. Anal. Chem. v.28 no.3 Colorimetric method for determination of sugars and related substances Dubois, M.;K. A. Gilles;J. K. Hamilton;P. A. Rebers;F. Smith https://doi.org/10.1021/ac60111a017
  27. Biotechnol. v.10 Recombinant protein expressin in high cell density fed-batch cultures of E. coli Yee, L.;H. W. Blanch https://doi.org/10.1038/nbt1292-1550
  28. Appl. Microbiol. Biotechnol. v.49 Fed-batch fermentation dealing with nitrogen limitation in microbial fementation dealing with nitrogen limitation in microbial transglutaminase production by Streptoveriticillium mobaraense Zhu, Y., Rinzema;A. Tramper;E. de Bruin;J. Bol https://doi.org/10.1007/s002530051165