• Title/Summary/Keyword: microbial composition

Search Result 577, Processing Time 0.022 seconds

Fatty acid-balanced oil improved nutrient digestibility, altered milk composition in lactating sows and fecal microbial composition in piglets

  • Yu Zhang;Shuyu Peng;Shuang Dong;Jihua Wang;Yu Cao;Yongxi Ma;Chunlin Wang
    • Animal Bioscience
    • /
    • v.37 no.5
    • /
    • pp.883-895
    • /
    • 2024
  • Objective: This study aimed to investigate the effects of dietary supplementation of a fatty acid-balanced oil, instead of soybean oil, on reproductive performance, nutrient digestibility, blood indexes, milk composition in lactating sows, and fecal microbial composition in piglets. Methods: Twenty-four sows (Landrace×Yorkshire, mean parity 4.96) were randomly allotted to two treatments with twelve pens per treatment and one sow per pen based on their backfat thickness and parity. The experiment began on day 107 of gestation and continued until weaning on day 21 of lactation, lasting for 28 days. The control group (CG) was fed a basal diet supplemented with 2% soybean oil and the experimental group (EG) was fed the basal diet supplemented with 2% fatty acid-balanced oil. Results: The fatty acid-balanced oil supplementation increased (p<0.05) the apparent total tract digestibility of dry matter, crude protein, and gross energy in sows. The lower (p<0.05) serum high-density lipoprotein cholesterol and albumin levels of sows were observed in the EG on day 21 of lactation. Dietary supplementation with the fatty acid-balanced oil decreased the fat content, increased the immunoglobulin G level, and changed (p<0.05) some fatty acid content in milk. Moreover, the fatty acid-balanced oil supplementation changed (p<0.05) the fecal microbial composition of piglets, where the average relative abundance of Spirochaetota was decreased (p<0.05) by 0.55% at the phylum level, and the average relative abundance of some potentially pathogenic fecal microorganism was decreased (p<0.05) at the species level. Conclusion: The fatty acid-balanced oil improved nutrient digestibility, changed the serum biochemical indices and milk composition of sows, and ameliorated the fecal microbial composition of piglets.

Changes in the ginsenoside content during the fermentation process using microbial strains

  • Lee, So Jin;Kim, Yunjeong;Kim, Min-Gul
    • Journal of Ginseng Research
    • /
    • v.39 no.4
    • /
    • pp.392-397
    • /
    • 2015
  • Background: Red ginseng (RG) is processed from Panax ginseng via several methods including heat treatment, mild acid hydrolysis, and microbial conversion to transform the major ginsenosides into minor ginsenosides, which have greater pharmaceutical activities. During the fermentation process using microbial strains in a machine for making red ginseng, a change of composition occurs after heating. Therefore, we confirmed that fermentation had occurred using only microbial strains and evaluated the changes in the ginsenosides and their chemical composition. Methods: To confirm the fermentation by microbial strains, the fermented red ginseng was made with microbial strains (w-FRG) or without microbial strains (n-FRG), and the fermentation process was performed to tertiary fermentation. The changes in the ginsenoside composition of the self-manufactured FRG using the machine were evaluated using HPLC, and the 20 ginsenosides were analyzed. Additionally, we investigated changes of the reducing sugar and polyphenol contents during fermentation process. Results: In the fermentation process, ginsenosides Re, Rg1, and Rb1 decreased but ginsenosides Rh1, F2, Rg3, and Compound Y (C.Y) increased in primary FRG more than in the raw ginseng and RG. The content of phenolic compounds was high in FRG and the highest in the tertiary w-FRG. Moreover, the reducing sugar content was approximately three times higher in the tertiary w-FRG than in the other n-FRG. Conclusion: As the results indicate, we confirmed the changes in the ginsenoside content and the role of microbial strains in the fermentation process.

Changes in the Composition and Microbial Community of the Pepper Rhizosphere in Field with Bacterial Wilt Disease

  • Hyun Gi, Kong;Mee Kyung, Sang;Ju Hee, An;Songhwa, Kim;Yong Ju, Jin;Jaekyeong, Song
    • The Plant Pathology Journal
    • /
    • v.38 no.6
    • /
    • pp.692-699
    • /
    • 2022
  • Bacterial wilt caused by Ralstonia solanacearum is considered one of the most harmful diseases of pepper plants. Recently, research on plant disease control through the rhizosphere microbiome has been actively conducted. In this study, the relationship with disease occurrence between the neighboring plant confirmed by analyzing the physicochemical properties of the rhizosphere soil and changes in the microbial community. The results confirmed that the microbial community changes significantly depending on the organic matters, P2O5, and clay in the soil. Despite significant differences in microbial communities according to soil composition, Actinobacteriota at the phylum level was higher in healthy plant rhizosphere (mean of relative abundance, D: 8.05 ± 1.13; H: 10.06 ± 1.59). These results suggest that Actinobacteriota may be associated with bacterial wilt disease. In this study, we present basic information for constructing of healthy soil in the future by presenting the major microbial groups that can suppress bacterial wilt.

Effects of Adding Oyster Shell Powder to Hanwoo Manure on its Quality and Microbial Composition - A Lab Study - (한우분에 굴 패각분말을 첨가 시 분의 특성과 미생물에 미치는 영향 -실험실 연구를 중심으로-)

  • Chang, Hong Hee;Joo, Young-Ho;Seo, Myeong-Ji;Kim, Ji-Yoon;Lee, Seong-Shin;Choi, Jeong-Seok;Jeong, Seung-Min;Noh, Hyeon-Tak;Kim, Sam-Churl
    • Journal of Environmental Science International
    • /
    • v.30 no.8
    • /
    • pp.703-708
    • /
    • 2021
  • To improve the environmental management and resources, in this study, we aimed to investigate the effect of adding oyster shell powder to Hanwoo manure on its characteristics and microbial composition during the storage period. Additives were deposited on top of the manure surface at the rate of 0, 0.5, and 1% of oyster shell powder per 200 g of Hanwoo manure in a plastic container with three replicates; however, untreated manure litter served as the control. Manure characteristics (dry matter, organic matter and crude ash) and microbial composition (lactic acid bacteria, yeast, Bacillus subtilis, Salmonella, and E.coli) were evaluated at day 0, 2, 4, and 8. Manure characteristics exhibited an effect on dry matter, organic matter, and crude ash at day 2 and 8 (p<0.05), and not for day 0 and 4 (p>0.05). With the exception of yeast content at day 4 of storage, lactic acid bacteria, yeast, Bacillus subtilis, Salmonella, and E.coli exhibited no significant differences in all conditions during the storage period. Conclusively, addition of 1% oyster shell powder to Hanwoo manure resulted in slightly better manure characteristics; however, its microbial composition remained unchanged.

Evaluation of Microbial Community Composition in Cultivated and Uncultivated Upland Soils by Fatty Acids (지방산에 의한 경지 및 미경지 토양의 미생물군집평가)

  • Suh, Jang-Sun;Chon, Gil-Hyong;Kwon, Jang-Sik;Kim, Sang-Hyo;Baek, Hyung-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.4
    • /
    • pp.239-246
    • /
    • 2003
  • We examined the relationships among community composition, microbial population, and microbial biomass to determine whether different land use leads to differences in microbial community composition. And also the relationships between soil characteristics and microbial community composition were investigated. There was no difference in pH between uncultivated and cultivated soils, but electrical conductivity, and contents of organic matter, available P and exchangeable cations were greater in the cultivated soil compared to the uncultivated soil. A linear correlation ($r^2=0.557$, n=18, p<0.01) was found between biomass-C estimated with fumigation extraction technique and total amount of fatty acids. An increase of fatty acid methyl esters (FAMEs) for bacteria, actinomycetes, fungi and protozoa was observed in cultivated soil.

Effects of Quorum Quenching on the Microbial Community of Biofilm in an Anoxic/Oxic MBR for Wastewater Treatment

  • Jo, Sung Jun;Kwon, Hyeokpil;Jeong, So-Yeon;Lee, Sang Hyun;Oh, Hyun-Suk;Yi, Taewoo;Lee, Chung-Hak;Kim, Tae Gwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.9
    • /
    • pp.1593-1604
    • /
    • 2016
  • Recently, bacterial quorum quenching (QQ) has been proven to have potential as an innovative approach for biofouling control in membrane bioreactors (MBRs) for advanced wastewater treatment. Although information regarding the microbial community is crucial for the development of QQ strategies, little information exists on the microbial ecology in QQ-MBRs. In this study, the microbial communities of biofilm were investigated in relation to the effect of QQ on anoxic/oxic MBRs. Two laboratory-scale MBRs were operated with and without QQ-beads (QQ-bacteria entrapped in beads). The transmembrane pressure increase in the QQ-MBRs was delayed by approximately 100-110% compared with conventional- and vacant-MBRs (beads without QQ-bacteria) at 45 kPa. In terms of the microbial community, QQ gradually favored the development of a diverse and even community. QQ had an effect on both the bacterial composition and change rate of the bacterial composition. Proteobacteria and Bacteroidetes were the most dominant phyla in the biofilm, and the average relative composition of Proteobacteria was low in the QQ-MBR. Thiothrix sp. was the dominant bacterium in the biofilm. The relative composition of Thiothrix sp. was low in the QQ-MBR. These findings provide useful information that can inform the development of a new QQ strategy.

Mucin modifies microbial composition and improves metabolic functional potential of a synthetic gut microbial ecosystem

  • Mabwi, Humphrey A.;Komba, Erick V.G.;Mwaikono, Kilaza Samson;Hitayezu, Emmanuel;Mauliasari, Intan Rizki;Jin, Jong Beom;Pan, Cheol-Ho;Cha, Kwang Hyun
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.1
    • /
    • pp.63-74
    • /
    • 2022
  • Microbial dysbiosis in the gut is associated with human diseases, and variations in mucus alter gut microbiota. Therefore, we explored the effects of mucin on the gut microbiota using a community of 19 synthetic gut microbial species. Cultivation of these species in modified Gifu anaerobic medium (GAM) supplemented with mucin before synthetic community assembly facilitated substantial growth of the Bacteroides, Akkermansia, and Clostridium genera. The results of 16S rRNA microbial relative abundance profiling revealed more of the beneficial microbes Collinsella, Bifidobacterium, Ruminococcus, and Lactobacillus. This increased acetate levels in the community cultivated with, rather than without (control), mucin. We identified differences in predicted cell function and metabolism between microbes cultivated in GAM with and without mucin. Mucin not only changed the composition of the gut microbial community, but also modulated metabolic functions, indicating that it could help to modulate microbial changes associated with human diseases.

Optimization of Medium Composition and Cultivation Parameters for Fructosyltransferase Production by Penicillium aurantiogriseum AUMC 5605

  • Farid, Mohamed Abdel-Fattah Mohamed;Kamel, Zinat;Elsayed, Elsayed Ahmed;El-Deen, Azza Mohamed Noor
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.3
    • /
    • pp.209-218
    • /
    • 2015
  • Fructooligosaccharides have been mainly produced by microbial fructosyltransferases (FTase) enzymes. The present work focuses on the optimization of medium composition and cultivation parameters affecting FTase produced by Penicillium aurantiogriseum AUMC 5605 in shake flask cultivation. FTase production was optimized in two steps using DeMeo's fractional factorial design. A 1.46-fold increase in FTase production (105.4 U/mL) was achieved using the optimized culture medium consisting of (g/L): sucrose, 600; yeast extract, 10; $K_2HPO_4$, 5; $MgSO_4{\cdot}7H_2O$, 0.5; $(NH_4)_2SO_4$, 1.0 and KCl, 0.5. The obtained results showed that the maximum FTase enzyme activity was produced at initial cultivation pH values ranging from 6.0-6.5, at agitation speed of 200 rpm and using vegetative fungal cells as inoculum. Moreover, results showed that optimization of medium composition and some cultivation parameters resulted in an increase of about 93.7% in the enzyme activity than the nonoptimized cultivation conditions after 96 h of cultivation. Additionally, maximum production and specific production rates recorded 2340 U/L/h and 102 U/L/h/g cells, respectively.

Bacterial and fungal community composition across the soil depth profiles in a fallow field

  • Ko, Daegeun;Yoo, Gayoung;Yun, Seong-Taek;Jun, Seong-Chun;Chung, Haegeun
    • Journal of Ecology and Environment
    • /
    • v.41 no.9
    • /
    • pp.271-280
    • /
    • 2017
  • Background: Soil microorganisms play key roles in nutrient cycling and are distributed throughout the soil profile. Currently, there is little information about the characteristics of the microbial communities along the soil depth because most studies focus on microorganisms inhabiting the soil surface. To better understand the functions and composition of microbial communities and the biogeochemical factors that shape them at different soil depths, we analyzed microbial activities and bacterial and fungal community composition in soils up to a 120 cm depth at a fallow field located in central Korea. To examine the vertical difference of microbial activities and community composition, ${\beta}$-1,4-glucosidase, cellobiohydrolase, ${\beta}$-1,4-xylosidase, ${\beta}$-1,4-N-acetylglucosaminidase, and acid phosphatase activities were analyzed and barcoded pyrosequencing of 16S rRNA genes (bacteria) and internal transcribed spacer region (fungi) was conducted. Results: The activity of all the soil enzymes analyzed, along with soil C concentration, declined with soil depth. For example, acid phosphatase activity was $125.9({\pm}5.7({\pm}1SE))$, $30.9({\pm}0.9)$, $15.7({\pm}0.6)$, $6.7({\pm}0.9)$, and $3.3({\pm}0.3)nmol\;g^{-1}\;h^{-1}$ at 0-15, 15-30, 30-60, 60-90, and 90-120 cm soil depths, respectively. Among the bacterial groups, the abundance of Proteobacteria (38.5, 23.2, 23.3, 26.1, and 17.5% at 0-15, 15-30, 30-60, 60-90, and 90-120 cm soil depths, respectively) and Firmicutes (12.8, 11.3, 8.6, 4.3, and 0.4% at 0-15, 15-30, 30-60, 60-90, and 90-120 cm soil depths, respectively) decreased with soil depth. On the other hand, the abundance of Ascomycota (51.2, 48.6, 65.7, 46.1, and 45.7% at 15, 30, 60, 90, and 120 cm depths, respectively), a dominant fungal group at this site, showed no clear trend along the soil profile. Conclusions: Our results show that soil C availability can determine soil enzyme activity at different soil depths and that bacterial communities have a clear trend along the soil depth at this study site. These metagenomics studies, along with other studies on microbial functions, are expected to enhance our understanding on the complexity of soil microbial communities and their relationship with biogeochemical factors.

Bacterial diversity and its relationship to growth performance of broilers

  • Bae, Yeonji;Koo, Bonsang;Lee, Seungbaek;Mo, Jongsuk;Oh, Kwanghyun;Mo, In Pil
    • Korean Journal of Veterinary Research
    • /
    • v.57 no.3
    • /
    • pp.159-167
    • /
    • 2017
  • The microbial community is known to have a key role during the rearing period of broilers. In this study, gut microbial composition and diversity were examined to evaluate the relationships between these factors and broiler growth performance. By applying 454-pyrosequencing of the V1-V3 regions of bacterial 16S rRNA genes, six fecal samples from four- and 28-day-old chickens from three broiler farms and 24 intestinal samples of broilers with heavy and light body weights were analyzed. Microbial composition assessment revealed Firmicutes to be the most prevalent phylum at farm A, while Proteobacteria were predominant at farms B and C. Fecal microbial richness and diversity indices gradually increased from four to 28 days at all three farms. Microbial diversity assessment revealed that small intestine microbial diversity was lower in heavy birds than in light birds. In light birds, the Firmicutes proportion was lower than that in heavy birds. In conclusion, each broiler farm revealed a specific microbial profile which varied with the age of the birds. The microbial communities appeared to affect growth performance; therefore, gut microbial profiles can be utilized to monitor growth performance at broiler farms.