• Title/Summary/Keyword: microbial community analysis

Search Result 413, Processing Time 0.026 seconds

Assessment of indoor air micro-flora in selected schools

  • Katiyar, Vinita
    • Advances in environmental research
    • /
    • v.2 no.1
    • /
    • pp.61-80
    • /
    • 2013
  • Quantification of viable forms of microbial community (bacteria and fungi) using culture-dependent methods was done in order to characterize the indoor air quality (IAQ). Role of those factors, which may influence the concentration of viable counts of bacteria and fungi, like ventilation, occupancy, outdoor concentration and environmental parameters (temperature and relative humidity) were also determined. Volumetric-infiltration sampling technique was employed to collect air samples both inside and outside the schools. As regard of measurements of airborne viable culturable microflora of schools during one academic year, the level of TVMCs in school buildings was ranged between 803-5368 cfu/$m^3$. Viable counts of bacteria (VBCs) were constituted 63.7% of the mean total viable microbial counts where as viable counts of fungi (VFCs) formed 36.3% of the total. Mean a total viable microbial count (TVMCs) in three schools was 2491 cfu/$m^3$. Outdoor level of TVMCs was varied from 736-5855 cfu/$m^3$. Maximum and minimum VBCs were 3678-286 cfu/m3 respectively. Culturable fungal counts were ranged from 268-2089 cfu/$m^3$ in three schools. Significant positive correlation (p < 0.01) was indicated that indoor concentration of viable community reliant upon outdoor concentration. Temperature seemed to have a large effect (p < 0.05, p < 0.01) on the concentration of viable culturable microbial community rather than relative humidity. Consistent with the analysis and findings, the concentration of viable cultural counts of bacteria and fungi found indoors, were of several orders of magnitude, depending upon the potential of local, spatial and temporal factors, IO ratio appeared as a crucial indicator to identify the source of microbial contaminants.

Gut microbial assessment among Hylobatidae at the National Wildlife Rescue Centre, Peninsular Malaysia

  • Roberta Chaya Tawie Tingga;Millawati Gani;Abd Rahman Mohd-Ridwan;Nor Rahman Aifat;Ikki Matsuda;Badrul Munir Md-Zain
    • Journal of Veterinary Science
    • /
    • v.25 no.5
    • /
    • pp.65.1-65.11
    • /
    • 2024
  • Importance: Recent developments in genetic analytical techniques have enabled the comprehensive analysis of gastrointestinal symbiotic bacteria as a screening tool for animal health conditions, especially the endangered gibbons at the National Wildlife Rescue Centre (NWRC). Objective: High-throughput sequencing based on 16S ribosomal RNA genes was used to determine the baseline gut bacterial composition and identify potential pathogenic bacteria among three endangered gibbons housed in the NWRC. Methods: Feces were collected from 14 individuals (Hylobates lar, n = 9; Hylobates agilis, n = 4; and Symphalangus syndactylus, n = 1) from March to November 2022. Amplicon sequencing were conducted by targeting V3-V4 region. Results: The fecal microbial community of the study gibbons was dominated by Bacteroidetes and Firmicutes (phylum level), Prevotellaceae and Lachnospiraceae/Muribaculaceae (family level), and Prevotella (and its subgroups) (genera level). This trend suggests that the microbial community composition of the study gibbons differed insignificantly from previously reported conspecific or closely related gibbon species. Conclusions and Relevance: This study showed no serious health problems that require immediate attention. However, relatively low alpha diversity and few potential bacteria related to gastrointestinal diseases and streptococcal infections were detected. Information on microbial composition is essential as a guideline to sustain a healthy gut condition of captive gibbons in NWRC, especially before releasing this primate back into the wild or semi-wild environment. Further enhanced husbandry environments in the NWRC are expected through continuous health monitoring and increase diversity of the gut microbiota through diet diversification.

Variations in Kiwifruit Microbiota across Cultivars and Tissues during Developmental Stages

  • Su-Hyeon Kim;Da-Ran Kim;Youn-Sig Kwak
    • The Plant Pathology Journal
    • /
    • v.39 no.3
    • /
    • pp.245-254
    • /
    • 2023
  • The plant microbiota plays a crucial role in promoting plant health by facilitating the nutrient acquisition, abiotic stress tolerance, biotic stress resilience, and host immune regulation. Despite decades of research efforts, the precise relationship and function between plants and microorganisms remain unclear. Kiwifruit (Actinidia spp.) is a widely cultivated horticultural crop known for its high vitamin C, potassium, and phytochemical content. In this study, we investigated the microbial communities of kiwifruit across different cultivars (cvs. Deliwoong and Sweetgold) and tissues at various developmental stages. Our results showed that the microbiota community similarity was confirmed between the cultivars using principal coordinates analysis. Network analysis using both degree and eigenvector centrality indicated similar network forms between the cultivars. Furthermore, Streptomycetaceae was identified in the endosphere of cv. Deliwoong by analyzing amplicon sequence variants corresponding to tissues with an eigenvector centrality value of 0.6 or higher. Our findings provide a foundation for maintaining kiwifruit health through the analysis of its microbial community.

A study on characteristics analysis of autotrophic denitrification microbial community using sulfur granule (황입자를 이용한 독립영양탈질 미생물 군집분포 특성분석에 관한 연구)

  • Yoon, Su-chul;Joo, Jae-young;Nam, Duck-hyun;Park, Chul-hwi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.6
    • /
    • pp.673-679
    • /
    • 2008
  • The representative microorganism of autotrophic denitrification using sulfur granule, oxidizes the reduction from S and performs denitrification by reducing $NO_3{^-}-N$ to $N_2$ gas. The sampling of autotrophic denitrification microorganisms has been performed from foreshore sludge, condensed sludge, and active sludge, but the analysis of autotrophic denitrification microbial community characteristics has been lacking. Based on the separation and identification of each sample using the PCR and DGGE methodologies, many types of sulfuric microorganisms and autotrophic denitrification microorganisms were found.

Effect of Exposure Concentration and Time of Fuel Additives on the Indigenous Microbial Community in Forests (산림 토착 미생물 군집에 미치는 유류 첨가제 노출 농도 및 시간의 영향)

  • Cho, Won-Sil;Cho, Kyung-Suk
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.5
    • /
    • pp.387-394
    • /
    • 2008
  • The toxicity of methyl tert-butyl ether (MTBE), tert-butyl alcohol (TBA) and formaldehyde (FA) on the indigenous microbial community in forest soil was studied. MTBE, TBA and FA with different concentrations were added into microcosms containing forest soil samples. After 10 and 30 days, total viable cell number and dehydrogenase activity in the microcosms were evaluated. Bacterial communities in the microcosms were also analyzed using a denaturing gradient gel electrophoresis (DGGE). Dehydrogenase activity and total viable cell number were decreased according to the increase of MTBE, TBA and FA concentrations (P<0.05). FA toxicity was the highest, but TBA toxicity was the lowest. The results of principal component analysis using DGGE fingerprints showed that the microbial communities contaminated MTBE, TBA and FA were grouped by exposure time not exposure concentration. Dominant species in the microcosms were as follows: Photobacterium damselae sub sp. and Bacillus sp. KAR28 for MTBE; Mycobacterium sp. and Uncultured Clostridium sp. for TBA; and Uncultured Paenibacillaceae bacterium and Anxynobacillus, Flavithermus for FA.

Microbial community structure analysis from Jeju marine sediment (제주도 인근 해양퇴적물 내의 미생물 군집 구조분석)

  • Koh, Hyeon Woo;Rani, Sundas;Hwang, Han-Bit;Park, Soo-Je
    • Korean Journal of Microbiology
    • /
    • v.52 no.3
    • /
    • pp.375-379
    • /
    • 2016
  • In this study, the structure and diversity of bacterial community were investigated in the surface and subsurface marine sediments using a NGS method (i.e. illumina sequencing technology). The bacterial community in the surface was distinct from that in the subsurface of marine sediment; with the exception of the phylum Proteobacteria, the relative abundance of Bacteroides phylum were higher in the surface than subsurface, whereas the sequences affiliated to the phyla Chloroflexi and Acidobacteria were relatively more copious in the subsurface than surface sediment. Moreover, interestingly, we observed that the phyla Nitrospinae and Nitrospirae contribute to nitrogen cycle in the marine sediment. This study may present the possibility for the presence of novel microorganisms as unexplored sources and provide basic information on the microbial community structure.

Effects of Transgenic Soybean Cultivation on Soil Microbial Community in the Rhizosphere (형질전환 콩 재배가 근권 토양 미생물상에 미치는 영향)

  • Lee, Ki-Jong;Sohn, Soo-In;Lee, Jang-Yong;Yi, Bu-Young;Oh, Sung-Dug;Kweon, Soon-Jong;Suh, Seok-Choel;Ryu, Tae-Hun;Kim, Kyung-Hwan;Park, Jong-Sug
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.4
    • /
    • pp.466-472
    • /
    • 2011
  • BACKGROUND: Soybean [Glycine max (L.) Merrill] is a legume and an important oil crop worldwide. This study was conducted to evaluate the possible impact of transgenic soybean cultivation on the soil microbial community. METHODS AND RESULTS: Microorganisms were isolated from the rhizosphere soils. Microbial community was identified based on the culture-dependent and molecular biology methods. The total numbers of bacteria, fungi, and actinomycete in the rhizosphere soils cultivated with transgenic and non-transgenic soybeans were similar to each other, and there was no significant difference between transgenic and non-transgenic soybeans. Dominant bacterial phyla in the rhizosphere soils cultivated with transgenic or non-transgenic soybeans were Actinobacteria, Firmicutes, and Proteobacteria. The microbial communities in transgenic and non-transgenic soybean soils were characterized using the denaturing gradient gel electrophoresis (DGGE). The DGGE profiles showed the different patterns, but didn't show significant difference to each other at 0.05 significance level. DNAs were isolated from soils cultivating transgenic or non-transgenic soybeans and analyzed for persistence of transgenes in the soil by using PCR. PCR analysis revealed that there were no amplified ${\gamma}$-tmt and bar gene in soil DNA. CONCLUSION(S): The results of this study suggested that microbial community of soybean field were not significantly affected by cultivation of the transgenic soybeans.

Comparison of Faecal Microbial Community of Lantang, Bama, Erhualian, Meishan, Xiaomeishan, Duroc, Landrace, and Yorkshire Sows

  • Yang, Lina;Bian, Gaorui;Su, Yong;Zhu, Weiyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.6
    • /
    • pp.898-906
    • /
    • 2014
  • The objective of this study was to investigate differences in the faecal microbial composition among Lantang, Bama, Erhualian, Meishan, Xiaomeishan, Duroc, Landrace, and Yorkshire sows and to explore the possible link of the pig breed with the gut microbial community. Among the sows, the Meishan, Landrace, Duroc, and Yorkshire sows were from the same breeding farm with the same feed. Fresh faeces were collected from three sows of each purebred breed for microbiota analysis and volatile fatty acid (VFA) determination. Denaturing gradient gel electrophoresis (DGGE) analysis revealed that samples from Bama, Erhualian, and Xiaomeishan sows, which from different farms, were generally grouped in one cluster, with similarity higher than 67.2%, and those from Duroc, Landrace, and Yorkshire sows were grouped in another cluster. Principal component analysis of the DGGE profile showed that samples from the foreign breeds and the samples from the Chinese indigenous breeds were scattered in two different groups, irrespective of the farm origin. Faecal VFA concentrations were significantly affected by the pig breed. The proportion of acetate was higher in the Bama sows than in the other breeds. The real-time PCR analysis showed that 16S rRNA gene copies of total bacteria, Firmicutes and Bacteroidetes were significantly higher in the Bama sows compared to Xiaomeishan and Duroc sows. Both Meishan and Erhualian sows had higher numbers of total bacteria, Firmicutes, Bacteroidetes and sulphate-reducing bacteria as compared to Duroc sows. The results suggest that the pig breed affects the composition of gut microbiota. The microbial composition is different with different breeds, especially between overseas breeds (lean type) and Chinese breeds (relatively obese type).

Analysis of Microbial Communities Using Culture-dependent and Culture-independent Approaches in an Anaerobic/Aerobic SBR Reactor

  • Lu Shipeng;Park Min-Jeong;Ro Hyeon-Su;Lee Dae-Sung;Park Woo-Jun;Jeon Che-Ok
    • Journal of Microbiology
    • /
    • v.44 no.2
    • /
    • pp.155-161
    • /
    • 2006
  • Comparative analysis of microbial communities in a sequencing batch reactor which performed enhanced biological phosphorus removal (EBPR) was carried out using a cultivation-based technique and 16S rRNA gene clone libraries. A standard PCR protocol and a modified PCR protocol with low PCR cycle was applied to the two clone libraries of the 16S rRNA gene sequences obtained from EBPR sludge, respectively, and the resulting 424 clones were analyzed using restriction fragment length polymorphisms (RFLPs) on 16S rRNA gene inserts. Comparison of two clone libraries showed that the modified PCR protocol decreased the incidence of distinct fragment patterns from about 63 % (137 of 217) in the standard PCR method to about 34 % (70 of 207) under the modified protocol, suggesting that just a low level of PCR cycling (5 cycles after 15 cycles) can significantly reduce the formation of chimeric DNA in the final PCR products. Phylogenetic analysis of 81 groups with distinct RFLP patterns that were obtained using the modified PCR method revealed that the clones were affiliated with at least 11 phyla or classes of the domain Bacteria. However, the analyses of 327 colonies, which were grouped into just 41 distinct types by RFLP analysis, showed that they could be classified into five major bacterial lineages: ${\alpha},\;{\beta},\;{\gamma}-$ Proteobacteria, Actinobacteria, and the phylum Bacteroidetes, which indicated that the microbial community yielded from the cultivation-based method was still much simpler than that yielded from the PCR-based molecular method. In this study, the discrepancy observed between the communities obtained from PCR-based and cultivation-based methods seems to result from low culturabilities of bacteria or PCR bias even though modified culture and PCR methods were used. Therefore, continuous development of PCR protocol and cultivation techniques is needed to reduce this discrepancy.