• 제목/요약/키워드: microbial analysis

검색결과 1,700건 처리시간 0.028초

Influence of Companion Planting on Microbial Compositions and Their Symbiotic Network in Pepper Continuous Cropping Soil

  • Jingxia Gao;Fengbao Zhang
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권6호
    • /
    • pp.760-770
    • /
    • 2023
  • Continuous cropping obstacles have become a serious factor restricting sustainable development in modern agriculture, while companion planting is one of the most common and effective methods for solving this problem. Here, we monitored the effects of companion planting on soil fertility and the microbial community distribution pattern in pepper monoculture and companion plantings. Soil microbial communities were analyzed using high-throughput sequencing technology. Companion plants included garlic (T1), oat (T2), cabbage (T3), celery (T4), and white clover (T5). The results showed that compared with the monoculture system, companion planting significantly increased the activities of soil urease (except for T5) and sucrase, but decreased catalase activity. In addition, T2 significantly improved microbial diversity (Shannon index) while T1 resulted in a decrease of bacterial OTUs and an increase of fungal OTUs. Companion planting also significantly changed soil microbial community structures and compositions. Correlation analysis showed that soil enzyme activities were closely correlated with bacterial and fungal community structures. Moreover, the companion system weakened the complexity of microbial networks. These findings indicated that companion plants can provide nutrition to microbes and weaken the competition among them, which offers a theoretical basis and data for further research into methods for reducing continuous cropping obstacles in agriculture.

Prevalence of salivary microbial load and lactic acid presence in diabetic and non-diabetic individuals with different dental caries stages

  • Monika Mohanty ;Shashirekha Govind;Shakti Rath
    • Restorative Dentistry and Endodontics
    • /
    • 제49권1호
    • /
    • pp.4.1-4.9
    • /
    • 2024
  • Objectives: This study aims to correlate caries-causing microorganism load, lactic acid estimation, and blood groups to high caries risk in diabetic and non-diabetic individuals and low caries risk in healthy individuals. Materials and Methods: This study includes 30 participants divided into 3 groups: Group A, High-risk caries diabetic individuals; Group B, High-risk caries non-diabetic individuals; and Group C, Low-risk caries individuals. The medical condition, oral hygiene, and caries risk assessment (American Dental Association classification and International Caries Detection and Assessment System scoring) were documented. Each individual's 3 mL of saliva was analyzed for microbial load and lactic acid as follows: Part I: 2 mL for microbial quantity estimation using nutrient agar and blood agar medium, biochemical investigation, and carbohydrate fermentation tests; Part II: 0.5 mL for lactic acid estimation using spectrophotometric analysis. Among the selected individuals, blood group correlation was assessed. The χ2 test, Kruskal-Wallis test, and post hoc analysis were done using Dunn's test (p < 0.05). Results: Group A had the highest microbial load and lactic acid concentration, followed by Groups B and C. The predominant bacteria were Lactobacilli (63.00 ± 15.49) and Streptococcus mutans (76.00 ± 13.90) in saliva. Blood Group B is prevalent in diabetic and non-diabetic high-risk caries patients but statistically insignificant. Conclusions: Diabetic individuals are more susceptible to dental caries due to high microbial loads and increased lactic acid production. These factors also lower the executing tendency of neutrophils, which accelerates microbial accumulation and increases the risk of caries in diabetic individuals.

Genomic and Proteomic Analysis of Microbial Function in the Gastrointestinal Tract of Ruminants - Review -

  • White, Bryan A.;Morrison, Mark
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제14권6호
    • /
    • pp.880-884
    • /
    • 2001
  • Rumen microbiology research has undergone several evolutionary steps: the isolation and nutritional characterization of readily cultivated microbes; followed by the cloning and sequence analysis of individual genes relevant to key digestive processes; through to the use of small subunit ribosomal RNA (SSU rRNA) sequences for a cultivation-independent examination of microbial diversity. Our knowledge of rumen microbiology has expanded as a result, but the translation of this information into productive alterations of ruminal function has been rather limited. For instance, the cloning and characterization of cellulase genes in Escherichia coli has yielded some valuable information about this complex enzyme system in ruminal bacteria. SSU rRNA analyses have also confirmed that a considerable amount of the microbial diversity in the rumen is not represented in existing culture collections. However, we still have little idea of whether the key, and potentially rate-limiting, gene products and (or) microbial interactions have been identified. Technologies allowing high throughput nucleotide and protein sequence analysis have led to the emergence of two new fields of investigation, genomics and proteomics. Both disciplines can be further subdivided into functional and comparative lines of investigation. The massive accumulation of microbial DNA and protein sequence data, including complete genome sequences, is revolutionizing the way we examine microbial physiology and diversity. We describe here some examples of our use of genomics- and proteomics-based methods, to analyze the cellulase system of Ruminococcus flavefaciens FD-1 and explore the genome of Ruminococcus albus 8. At Illinois, we are using bacterial artificial chromosome (BAC) vectors to create libraries containing large (>75 kbases), contiguous segments of DNA from R. flavefaciens FD-1. Considering that every bacterium is not a candidate for whole genome sequencing, BAC libraries offer an attractive, alternative method to perform physical and functional analyses of a bacterium's genome. Our first plan is to use these BAC clones to determine whether or not cellulases and accessory genes in R. flavefaciens exist in clusters of orthologous genes (COGs). Proteomics is also being used to complement the BAC library/DNA sequencing approach. Proteins differentially expressed in response to carbon source are being identified by 2-D SDS-PAGE, followed by in-gel-digests and peptide mass mapping by MALDI-TOF Mass Spectrometry, as well as peptide sequencing by Edman degradation. At Ohio State, we have used a combination of functional proteomics, mutational analysis and differential display RT-PCR to obtain evidence suggesting that in addition to a cellulosome-like mechanism, R. albus 8 possesses other mechanisms for adhesion to plant surfaces. Genome walking on either side of these differentially expressed transcripts has also resulted in two interesting observations: i) a relatively large number of genes with no matches in the current databases and; ii) the identification of genes with a high level of sequence identity to those identified, until now, in the archaebacteria. Genomics and proteomics will also accelerate our understanding of microbial interactions, and allow a greater degree of in situ analyses in the future. The challenge is to utilize genomics and proteomics to improve our fundamental understanding of microbial physiology, diversity and ecology, and overcome constraints to ruminal function.

Systematic analysis 방법을 이용한 국내 엽경채류 농산물의 미생물학적 오염도 분석 (Systematic Analysis of Microbial Contamination in Leaf and Stem Products in Korea)

  • 성승미;민지현;김현정;윤기선;이종경
    • 한국식품위생안전성학회지
    • /
    • 제32권4호
    • /
    • pp.306-313
    • /
    • 2017
  • 본 연구는 농산물의 미생물학적 수준에 관하여 체계적인 연구분석(systemic analysis) 기법을 이용하여 비가열 농산물의 위생안전관리를 목적으로 연구를 수행하였다. 2001년부터 2015년까지 인쇄된 관련 연구논문을 NDSL 검색엔진을 활용하여 자료를 수집, 리뷰, 자료 정리, 분석 및 결과 정리하였다. 농산물 분류체계를 비교 조사하여 미국의 IFSAC (Interagency Food Safety Analytics Collaboration)의 식품분류체계에 따라 국내 농산물을 분류하였다. 선정된 22건의 논문 내 89건의 데이터를 종합한 결과, 분류체계 내에서 국내 농산물에서 총균수 수준이 높고 대장균 오염이 가장 많은 농산물은 엽경채류와 새싹 발아채소(sprouts)로 나타났다. 단체급식에서 생채소로 소비되는 엽경채류에서 단체급식의 다소비 농산물로서 식중독과 연관성이 높은 품목인 상추, 부추, 배추에 관하여 미생물에 관한 자료 검색, 수집, 선정 및 분석 결과 최종 33편의 논문에서 미생물의 정량적 수준은 총균수 4.15~ 7.69 log CFU/g, 대장균군 1~6.99 log CFU/g, B. cereus 0.51~3.9 log CFU/g으로 나타났다. GAP 데이터 기반 농산물의 미생물학적 영향을 미치는 환경인자 문헌조사 결과 퇴비, 토양, 작업자 손, 장갑이 주요 영향인자로 나타났다. 농산물의 미생물학적 관리를 위하여 전문가 의견과 문헌조사를 통하여 GAP도입, 취약 품목의 미생물학적 분석계획, 토양으로부터 작물의 오염을 최소화 할 수 있는 작물생산방식 도입 및 실행규범 준수가 필요하다.

Quinone profile과 PCR-DGGE를 이용한 정수장 침전지에서의 부착조류 및 미생물군집의 계절적 변화해석 (Analysis of the Seasonal Change in Attached Algae and Microbial Community Structure in Sediment Basin Trough of Water Treatment Plant By Using Quinone Profile and PCR-DGGE)

  • 유현선;임병란;안규홍
    • 상하수도학회지
    • /
    • 제20권3호
    • /
    • pp.461-467
    • /
    • 2006
  • The seasonal change in attached algae and microbial community structure at sedimentation basin of water treatment plant was investigated by using quinone profiles and denaturing gel gradient electrophoresis (DGGE). The photosynthetic bacteria and algae contains PQ-9 and VK-1 as major quinone are major component of the total quinone fraction in attached algae and microorganisms on sedimentation basin trough. The microorganisms containing menaquinones appear to be sensitivity to the change in temperature than those containing ubiquinones. The plot of the mole fraction of dominant quinone species ($f_d$) to the DQ values showed higher sensitivity to the seasonal change in the microbial community structure. The results indicated that quinone and DGGE are useful tool for the evaluation of the changes in the microbial community structure.

시판 도시락 중 동태전과 달걀말이의 생산단계에 따른 품질관리에 관한 연구 (A Study on Microbiological Quality & Safety Control of Dongtae-Jeon(Pan-fried dish) and Rolled Egg in Packaged Meals(Dosirak) with Various Cooking Processes)

  • 김혜영;고성희
    • 한국식품조리과학회지
    • /
    • 제20권3호
    • /
    • pp.292-298
    • /
    • 2004
  • This study researched the microbial change of quality according to various phases of product flow of Dongtae-Jeon (a pan-fried dish) and rolled egg in packaged meals. In order to carry out the study, the time required, temperature, water activity and microbial quality were measured at various phases of production flow of Dongtae-Jeon and rolled egg in packaged meals, and the effects of these factors on microbial multiplication was analyzed. According to the phases in product flow of Dongtae-Jeon, it was shown that the time required is 12.5hrs and water activity is distributed 0.932-0.980. These conditions were suitable for microbial multiplication. According to the phases in product flow of rolled egg, it was shown that the time required is 3.3hrs. In addition, qualitative analysis of pathogenic microorganisms (Salmonella spp., Vibrio parahaemolyticus, Staphylococcus aureus) detected no such microorganisms in any of the samples.

土壤微生物劑處理가 가을배추의 收量에 미치는 影響 (Effect of Soil Microorganisms on Chinese Cabbage(Brassica Campestris L) Yield in Fall Cropping)

  • 김경제
    • 한국유기농업학회지
    • /
    • 제7권2호
    • /
    • pp.107-114
    • /
    • 1999
  • 몇가지 土壤微生物劑의 處理가 배추의 收量과 土壤 및 植物體의 化學成分, 그리고 微生物相에 미치는 影響을 調査하였다. 모든 微生物劑 處理區에서 無處理에 비하여 收量이 增加하였고, 糖度 또한 增加하여 微生物劑의 處理가 배추의 收量뿐만 아니라 品質의 向上에도 매우 效果的이라고 思料되었다. 植物體의 化學成分을 調査한 結果, MPK+Compost 處理區에서 Fe와 Zn 含量이 매우 높았으나 有意性은 없었고, 다른 成分들은 處理區間에서 差異가 없었다. 土壤의 化學成分에서는 Tomi 處理區에서 K와 Mg의 含量이 높았으나, 다른 處理區에서는 差異가 없었다. 土壤의 微生物相을 調査한 結果, 總細菌數에서는 Tomi 處理區가 가장 높았고 Husk+Palma 및 MPK+Husk+Palma 處理區에서도 높게 나타났다. Bacillus는 MPK+Husk+Palma 處理區가 가장 높았고 Husk+Palma와 Tomi 處理區에서도 몹시 增加되었다. Actinomycetes와 fungi에서도 Tomi 處理區가 매우 增加하였으나, 다른 處理區間에는 差異가 없었고, psedomonas에서도 各 處理間에 差異가 없었다.

  • PDF

The Role of High-throughput Transcriptome Analysis in Metabolic Engineering

  • Jewett, Michael C.;Oliveira, Ana Paula;Patil, Kiran Raosaheb;Nielsen, Jens
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제10권5호
    • /
    • pp.385-399
    • /
    • 2005
  • The phenotypic response of a cell results from a well orchestrated web of complex interactions which propagate from the genetic architecture through the metabolic flux network. To rationally design cell factories which carry out specific functional objectives by controlling this hierarchical system is a challenge. Transcriptome analysis, the most mature high-throughput measurement technology, has been readily applied In strain improvement programs in an attempt to Identify genes involved in expressing a given phenotype. Unfortunately, while differentially expressed genes may provide targets for metabolic engineering, phenotypic responses are often not directly linked to transcriptional patterns, This limits the application of genome-wide transcriptional analysis for the design of cell factories. However, improved tools for integrating transcriptional data with other high-throughput measurements and known biological interactions are emerging. These tools hold significant promise for providing the framework to comprehensively dissect the regulatory mechanisms that identify the cellular control mechanisms and lead to more effective strategies to rewire the cellular control elements for metabolic engineering.

고농도 염분폐수의 정화능이 우수한 기능성 미생물 커뮤니티의 군집 분석 (Microbial Community Analysis in the Wastewater Treatment of Hypersaline-Wastewater)

  • 이재원;김병혁;박용석;송영채;고성철
    • 한국미생물·생명공학회지
    • /
    • 제42권4호
    • /
    • pp.377-385
    • /
    • 2014
  • 본 연구에서는 고염폐수의 정화능이 우수한 미생물 기능성 커뮤니티 HWTC (Highsalt Wastewater Treatment Community)를 이용한 고염폐수 처리시스템을 개발하였으며, HWTC의 미생물 군집의 다양성을 확인해 보았다. HWTC의 고염폐수 처리능력은 HRT 2.5일만에 $COD_{cr}$ 84%의 처리효율로 확인하였다. 미생물 군집분석은 PCR-DGGE 기법과 16S rRNA gene clone library를 통하여 미생물 다양성을 확인하였다. 4%의 염농도의 폐수에서 우점하는 미생물은 Halomonas sp.와 Paenibacillus sp.로 나타났고, phylogenetic tree 분석을 통해 ${\gamma}$-proteobacteria 속하는 미생물의 다양성이 높게 나타났으며, firmicutes속 하는 미생물이 우점하고 있었다. 고염폐수를 처리할 수 있는 미생물 기능성 커뮤니티 HWTC를 이용하여, 고염의 폐수 정화를 가능하게 할 것으로 판단된다.