• 제목/요약/키워드: microalgal culture

검색결과 69건 처리시간 0.028초

Axenic isolation procedure of the neutral spore and conchocelis from the seaweed Porphyra yezoensis

  • Park, Jae-Suk;Hong, Yong-Ki
    • 한국어업기술학회:학술대회논문집
    • /
    • 한국어업기술학회 2000년도 춘계수산관련학회 공동학술대회발표요지집
    • /
    • pp.151-152
    • /
    • 2000
  • During in door or outdoor mass culture, Porphyra have been easily contaminated with bacteria, protozoa and microalgal species. Several axenic treatments for Porphyra thalli have been published (Polne-Fuller and Gibo 1984; Chen and McCracken 1993), but axenic techniques for neutral spores and conchocelis we not developed. In this work we describe the procedure for axenic isolation of neutral spores and conchocelis of Porphyra yezoensis (omitted)

  • PDF

Genetic Relationships among Multiple Strains of the Genus Tetraselmis Based on Partial 18S rDNA Sequences

  • Lee, Hye-Jung;Hur, Sung-Bum
    • ALGAE
    • /
    • 제24권4호
    • /
    • pp.205-212
    • /
    • 2009
  • Molecular genetic tools are widely used to learn more about the identical characterization of obscure microalgal strains. At the Korea Marine Microalgae Culture Center (KMMCC), the authors deduced the genetic relationship of 41 strains of the genus Tetraselmis by analysing a small subunit ribosomal DNA (18S rDNA) sequences. Forty-one strains were seperated into five groups, which showed over a 98-99% similarity to Tetraselmis striata or Tetraselmis sp. Tsbre. Also, 13 strains among them had an identical genotype to Tetraselmis striata while 5 strains had with Tetraselmis sp. Tsbre, respectively. The mean size of each strain generally showed the tendency of different variation according to the groups.

축산분뇨 혐기성 처리수에서 미세조류의 성장특성 (Characteristics of Microalgal Growth on Anaerobic Effluent of Animal Waste)

  • 임병란;이기세;노성유;박기영
    • 한국물환경학회지
    • /
    • 제24권3호
    • /
    • pp.306-310
    • /
    • 2008
  • Characteristics of microalgal growth was investigated using anaerobic effluent from two-phase animal waste digestor as substrate. Batch experiments were carried out to investigate the effect of the initial nitrogen and phosphorus concentrations on growth of Microcystis aeruginosa, Chlorella sp. and Euglena gracilis. In 400 times diluted anaerobic effluent (TN 3 mg/L), single cell growth of the Euglena gracilis population increased twice without delay, although Chlorella sp. and Microcystis aerugenos take over 144 hours. Similar appearance with single cell growth was observed in mixed cultures. However, microalgae population did not increase under condition of 10 times diluted influent (TP 3 mg/L) in both pure and mixed cultures, which was affected by high organic and nitrogen concentration. Logistic growth model successfully fitted to determine biokinetic parameters such as ${\lambda}$: lag time, ${\mu}m$: maximal specific growth rate, A: asymptote of growth.

Biological Constraints in Algal Biotechnology

  • Torzillo, Giuseppe;Pushparaj, Benjamin;Masojidek, Jiri;Vonshak, Avigad
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제8권6호
    • /
    • pp.338-348
    • /
    • 2003
  • In the past decade, considerable progress has been made in developing the appropriate biotechnology for microalgal mass cultivation aimed at establishing a new agro-industry. This review points out the main biological constraints affecting algal biotechnology outdoors and the requirements for making this biotechnology economically viable. One of them is the availability of a wide variety of algal species and improved strains that favorably respond to varying environmental conditions existing outdoors. It is thus just a matter of time and effort before a new methodology like genetic engineering can and will be applied in this field as well. The study of stress physiology and adaptation of microalgae has also an important application in further development of the biotechnology for mass culturing of microalgae. In outdoor cultures, cells are exposed to severe changes in light and temperature much faster than the time scale re-quired for the cells to acclimate. A better understanding of those parameters and the ability to rapidly monitor those conditions will provide the growers with a better knowledge on how to optimize growth and productivity. Induction of accumulation of high value products is associated with stress conditions. Understanding the physiological response may help in providing a better production system for the desired product and, at a later stage, give an insight of the potential for genetic modification of desired strains. The potential use of microalgae as part of a biological system for bioremediation/detoxification and wastewater treatment is also associated with growing the cells under stress conditions. Important developments in monitoring and feedback control of the culture behavior through application of on-line chlorophyll fluorescence technique are in progress. Understanding the process associated with those unique environmental conditions may help in choosing the right culture conditions as well as selecting strains in order to improve the efficiency of the biological process.

First record of a marine microalgal species, Chlorella gloriosa (Trebouxiophyceae) isolated from the Dokdo Islands, Korea

  • Kang, Nam Seon;Lee, Jung A;Jang, Hyeong Seok;Kim, Kyeong Mi;Kim, Eun Song;Yoon, Moongeun;Hong, Ji Won
    • 환경생물
    • /
    • 제37권4호
    • /
    • pp.526-534
    • /
    • 2019
  • Chlorella gloriosa (Chlorellaceae, Trebouxiophyceae) was isolated from seawater off the coast of the Dokdo Islands in Korea. An axenic culture was established using the streak-plate method on f/2 agar media supplemented with antibiotics, allowing identification of the isolate by morphological, molecular, and physiological analyses. The morphological characteristics observed by light and electron microscopy revealed typical morphologies of C. gloriosa species. The molecular phylogenetic inference drawn from the small-subunit 18S rRNA sequence verified that the microalgal strain belongs to C. gloriosa. Additionally, gas chromatography-mass spectrometry analysis showed that the isolate was rich in nutritionally important omega-3 and -6 polyunsaturated fatty acids and high-performance liquid chromatography analysis revealed that the high-value antioxidants lutein and violaxanthin were biosynthesized as accessory pigments by this microalga, with arabinose, galactose, and glucose as the major monosaccharides. Therefore, in this study, a Korean marine C. gloriosa species was discovered, characterized, and described, and subsequently added to the national culture collection.

해양배양기 내 중탄산염 공급에 따른 Tetraselmis sp. KCTC12432BP 증식에 관한 연구 (Investigation of Microalgal Growth, Tetraselmis sp. KCTC12432BP by Supplying Bicarbonate on the Ocean Cultivation)

  • 조용희;신동우;이상민;전효남;류영진;이종찬;임상민;이철균
    • 한국해양바이오학회지
    • /
    • 제6권2호
    • /
    • pp.118-122
    • /
    • 2014
  • The ocean provide great benefits for microalgal mass cultures with maintaining stable temperature due to high specific heat, mixing by wave energy, and providing large area for large-scale microalgae cultures. In this study, we cultivated a marine green microalga, Tetraselmis sp. KCTC12432BP, using marine photobioreactors on the ocean for investigating the effect of $NaHCO_3$ concentration on the biomass productivities and evaluating the potential of ocean microalgae culture. The culture medium consist of three fold concentrated f/2-Si with 4 g/L of $NaHCO_3$, which is dissolved in natural seawater. After 11 days of cultivation, the cultures reached stationary phase at biomass concentration of 1.6 g/L. At that time, $NaHCO_3$ concentration of 0, 2, and 4 g/L were fed to the cultures. The daily productivities of 0.11, 0.19, 0.30 g/L/day were attained with feeding rate of 0, 2, and 4 g/L $NaHCO_3$, respectively. Biomass productivity of Tetraselmis sp. KCTC12432BP was a function of the $NaHCO_3$ feeding rate as expected. This research shows that the microalgae can grow with $NaHCO_3$ as carbon source in marine photobioreactors on the ocean while exploiting various benefits of ocean cultivation.

Incubation of Scenedesmus quadricauda based on food waste compost

  • Kim, Keon Hee;Lee, Jae Han;Park, Chae Hong;Oh, Taek Keun
    • 농업과학연구
    • /
    • 제47권4호
    • /
    • pp.1039-1048
    • /
    • 2020
  • Food waste causes various economic losses and environmental pollution problems such as soil pollution and groundwater pollution. Food waste has been used as a resource in various forms and has been used mostly for feed and composting. This study compared microalgal nutrient medium (BG-11) with food waste compost to determine the possibility of using it as a culture medium. Scenedesmus quadricauda was isolated and cultured in an eutrophic reservoir and incubated for 3 days in distilled water before laboratory use. Food waste compost was produced in two food waste processing facilities, and hot water was extracted in the laboratory to be used for microalgae cultivation. The growth curve of the microalgae was analyzed based on the Chl-a concentration measured during the experiment, and the growth rate of the microalgae grown in the food waste compost was compared with the growth rate of those grown in the nutrient medium. Food waste compost showed a similar growth rate to that of the nutrient medium, and there was a difference depending on the manufacturing facility. The growth of microalgae in such food waste was further amplified when trace elements were added and showed better growth than that of the nutrient media. Particularly, when trace elements were added, the growth rate increased, and the growth period was further extended. Therefore, food waste compost can be sufficiently utilized as a microalgal culture medium, and if trace elements are added, it is considered that microalgae can be more effectively cultured compared to the existing nutrient medium.

미세조류 바이오연료 상용화를 위한 주요 인자 연구 (A Review on Major Factors for Microalgae Biofuel Commercialization)

  • 강도형;허수진;오철홍;주세종;전선미;최현우;노재훈;박세헌;김태영
    • Ocean and Polar Research
    • /
    • 제34권4호
    • /
    • pp.365-384
    • /
    • 2012
  • Microalgae are photosynthetic microorganisms that are highly productive in the presence of basic renewable natural sources (light, $CO_2$, water and nutrients). They can synthesize lipids, carbohydrates and proteins in a small number of days. Subsequently, these carbon-captured products can be processed into both biofuels and valuable co-products. Additionally, microalgae would be an ideal feedstock for replacing land-based food crops with cellular products as high energy density transportation fuels. These microscopic organisms could contribute a significant amount of renewable energy on a global scale. In Korea, microalgae biofuel research was common in the early 1990s. The research activities were unfortunately stopped due to limited governmental funds and low petroleum prices. Interest in algal biofuels in Korea has been growing recently due to an increased concern over oil prices, energy security, greenhouse gas emissions, and the potential for other biofuel feedstock to compete for limited agricultural resources. The high productivity of microalgae suggests that much of the Korean transportation fuel requirements can be met by biofuels at a production cost competitive with the increasing cost of petroleum seen in early 2008. At this time, the development of microlalgal biomass production technology remains in its infancy. This study reviewed microalgae culture systems and biomass production, harvesting, oil extraction, conversion, and technoeconomical bottlenecks. Many technical and economic barriers to using microalgal biofuels need to be overcome before mass production of microalgal-derived fuel substitutes is possible. However, serious efforts to overcome these barriers could become a large-scale commercial reality. Overall, this study provides a brief overview of the past few decades of global microalgal research.

미세조류 옥외배양 시스템을 이용한 돈분 액체 비료의 영양염류 제거 및 바이오디젤 생산 (Biodiesel Production and Nutrients Removal from Piggery Manure Using Microalgal Small Scale Raceway Pond (SSRP))

  • 최종은;김병혁;강시온;오희목;김희식
    • 환경생물
    • /
    • 제32권1호
    • /
    • pp.26-34
    • /
    • 2014
  • 에너지 소비의 증가와 화석 연료의 감소로 인해 바이오디젤과 같은 재생 가능한 대체 에너지 자원이 관심을 받고 있다. 미세조류를 이용한 바이오디젤은 기존의 농작물과 경쟁하지 않는 것과 더불어 많은 장점을 갖고 있다. 본 연구에서는 미세조류 배양의 생산 비용 절감과 축산 폐수 처리라는 두 가지 목표를 충족시키지 위해 돈분 액체 비료를 사용하였다. 옥외 배양 시스템(Small Scale Raceway Pond; SSRP)과 희석된 돈분 액체 비료를 이용하여 단일 미세조류 Chlorella sp. JK2, Scenedesmus sp. JK10 과 혼합 토착 미세조류 CSS를 20일 동안 각각 배양하였다. 미세조류 혼합균주인 CSS의 바이오매스 생산과 지질 생산성은 각각 $1.19{\pm}0.09gL^{-1}$, $12.44{\pm}0.38mgL^{-1}day^{-1}$로 단일 종에 비해 2배 이상 높았다. 돈분 액체 비료의 TN, TP의 제거율 역시 혼합 토착 미세조류 CSS에서 93.6%, 98.5%로 단일 종의 이용에 비해 30%이상 높은 제거 효율을 보여주었다. 이를 통해 돈분 액체 비료는 미세조류 배양에 필요한 N과 P를 제공하며, 미세조류를 이용한 SSRP를 통하여 영양염류를 제거할 수 있는 가능성을 확인하였다. 또한 미세조류 배양을 위한 생산 비용의 감소로 경제성 있는 바이오디젤의 생산 가능성을 확인하였다.

Growth Characteristics of Ultrahigh-density Microalgal Cultures

  • Richmond, Amos
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제8권6호
    • /
    • pp.349-353
    • /
    • 2003
  • The physiological characteristics of cultures of very high cell mass (e.g. 10g cell mass/L), termed“ultrahigh cell density cultures”is reviewed. A close relationship was found between the length of the optical path (OP) in flat-plate reactors and the optimal cell density of the culture as well as its areal (g m$\^$-2/ day$\^$-1/) productivity. Cell-growth inhibition (GI) unfolds as culture density surpasses a certain threshold. If it is constantly relieved, a 1.0cm OP reactor could produce ca. 50% more than reactors with longer OP, e.g. 5 or 10cm. This unique effect, discovered by Hu et al. [3], is explained in terms of the relationships between the frequency of the light-dark cycle (L-D cycle), cells undergo in their travel between the light and dark volumes in the reactor, and the turnover time of the photosynthetic center (PC). In long OP reactors (5cm and above) the L-D cycle time may be orders of magnitude longer than the PC turnover time, resulting in a light regime in which the cells are exposed along the L-D cycle, to long, wasteful dark periods. In contrast, in reactors with an OP of ca. 1.0 cm, the L-D cycle frequency approaches the PC turnover time resulting in a significant reduction of the wasteful dark exposure time, thereby inducing a surge in photosynthetic efficiency. Presently, the major difficulty in mass cultivation of ultrahigh-density culture (UHDC) concerns cell growth inhibition in the culture, the exact nature of which is awaiting detailed investigation.