DOI QR코드

DOI QR Code

Biodiesel Production and Nutrients Removal from Piggery Manure Using Microalgal Small Scale Raceway Pond (SSRP)

미세조류 옥외배양 시스템을 이용한 돈분 액체 비료의 영양염류 제거 및 바이오디젤 생산

  • Choi, Jong-Eun (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Byung-Hyuk (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kang, Zion (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Oh, Hee-Mock (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Hee-Sik (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology)
  • 최종은 (한국생명공학연구원 환경바이오연구센터) ;
  • 김병혁 (한국생명공학연구원 환경바이오연구센터) ;
  • 강시온 (한국생명공학연구원 환경바이오연구센터) ;
  • 오희목 (한국생명공학연구원 환경바이오연구센터) ;
  • 김희식 (한국생명공학연구원 환경바이오연구센터)
  • Received : 2013.11.01
  • Accepted : 2013.12.24
  • Published : 2014.03.31

Abstract

Due to the rapid energy consumption and fossil fuel abundance reduction, the world is progressively in need of alternative and renewable energy sources such as biodiesel. Biodiesel from microalgae offers high hopes to the scientific world for its potential as well as its non-competition with arable lands. Taking consideration to reduce the cost of production as well as to attain twin environmental goals of treatment and use of animal waste material the microalgal cultivation using piggery manure has been tested in this study. Unialgal strains such as Chlorella sp. JK2, Scenedesmus sp. JK10, and an indigenous mixed microalgal culture CSS were cultured for 20 days in diluted piggery manure using Small Scale Raceway Pond (SSRP). Biomass production and lipid productivity of CSS were $1.19{\pm}0.09gL^{-1}$, $12.44{\pm}0.38mgL^{-1}day^{-1}$, respectively and almost twice that of unialgal strains. Also, total nitrogen and total phosphorus removal efficiencies of CSS was 93.6% and 98.5% respectively and 30% higher removal efficiency compared to the use of unialgal strains. These results indicate that the piggery manure can provide microalgae necessary nitrogen and phosphorus for growth thereby effectively treating the manure. In addition, overall cost of microalgal cultivation and subsequently biodiesel production would be significantly reduced.

에너지 소비의 증가와 화석 연료의 감소로 인해 바이오디젤과 같은 재생 가능한 대체 에너지 자원이 관심을 받고 있다. 미세조류를 이용한 바이오디젤은 기존의 농작물과 경쟁하지 않는 것과 더불어 많은 장점을 갖고 있다. 본 연구에서는 미세조류 배양의 생산 비용 절감과 축산 폐수 처리라는 두 가지 목표를 충족시키지 위해 돈분 액체 비료를 사용하였다. 옥외 배양 시스템(Small Scale Raceway Pond; SSRP)과 희석된 돈분 액체 비료를 이용하여 단일 미세조류 Chlorella sp. JK2, Scenedesmus sp. JK10 과 혼합 토착 미세조류 CSS를 20일 동안 각각 배양하였다. 미세조류 혼합균주인 CSS의 바이오매스 생산과 지질 생산성은 각각 $1.19{\pm}0.09gL^{-1}$, $12.44{\pm}0.38mgL^{-1}day^{-1}$로 단일 종에 비해 2배 이상 높았다. 돈분 액체 비료의 TN, TP의 제거율 역시 혼합 토착 미세조류 CSS에서 93.6%, 98.5%로 단일 종의 이용에 비해 30%이상 높은 제거 효율을 보여주었다. 이를 통해 돈분 액체 비료는 미세조류 배양에 필요한 N과 P를 제공하며, 미세조류를 이용한 SSRP를 통하여 영양염류를 제거할 수 있는 가능성을 확인하였다. 또한 미세조류 배양을 위한 생산 비용의 감소로 경제성 있는 바이오디젤의 생산 가능성을 확인하였다.

Keywords

References

  1. Altin R, S Cetinkaya and HS Yucesu. 2001. The potential of using vegetable oil fuels as fuel for diesel engines. Energy Conv. Manag. 42:529-538. https://doi.org/10.1016/S0196-8904(00)00080-7
  2. APHA. 2005. Standard methods for the examination of water and wastewater.
  3. Barsanti L and P Gualtieri. 2005. Algae: anatomy, biochemistry, and biotechnology. CRC press.
  4. Bligh EG and WJ Dyer. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Phys. 37:911-917. https://doi.org/10.1139/o59-099
  5. Cai T, SY Park and Y Li. 2013. Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renew. Sust. Energ. Rev. 19:360-369. https://doi.org/10.1016/j.rser.2012.11.030
  6. Cain J, D Paschal and C Hayden. 1980. Toxicity and bioaccumulation of cadmium in the colonial green alga Scenedesmus obliquus. Arch. Environ. Contam. Toxicol. 9:9-16. https://doi.org/10.1007/BF01055495
  7. Chisti Y. 2007. Biodiesel from microalgae. Biotechnol. Adv. 25:294-306. https://doi.org/10.1016/j.biotechadv.2007.02.001
  8. Demirbas A. 2008. Comparison of transesterification methods for production of biodiesel from vegetable oils and fats. Energy Conv. Manag. 49:125-130. https://doi.org/10.1016/j.enconman.2007.05.002
  9. Felizardo P, MJ Neiva Correia, I Raposo, JF Mendes, R Berkemeier and JM Bordado. 2006. Production of biodiesel from waste frying oils. Waste Manage. 26:487-494. https://doi.org/10.1016/j.wasman.2005.02.025
  10. Georgianna DR and SP Mayfield. 2012. Exploiting diversity and synthetic biology for the production of algal biofuels. Nature 488:329-335. https://doi.org/10.1038/nature11479
  11. Gerpen JV. 2005. Biodiesel processing and production. Fuel Process. Technol. 86:1097-1107. https://doi.org/10.1016/j.fuproc.2004.11.005
  12. Gonzalez LE, RO Canizares and S Baena. 1997. Efficiency of ammonia and phosphorus removal from a colombian agroindustrial wastewater by the microalgae Chlorella vulgaris and Scenedesmus dimorphus. Bioresour. Technol. 60:259-262. https://doi.org/10.1016/S0960-8524(97)00029-1
  13. Guerrero MG, JM Vega and M Losada. 1981. The assimilatory nitrate-reducing system and its regulation. Ann. Rev. Plant Physiol. 32:169-204. https://doi.org/10.1146/annurev.pp.32.060181.001125
  14. Hu Q, M Sommerfeld, E Jarvis, M Ghirardi, M Posewitz, M Seibert and A Darzins. 2008. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 54:621-639. https://doi.org/10.1111/j.1365-313X.2008.03492.x
  15. Jeong ML, JM Gillis and J-Y Hwang. 2003. Carbon dioxide mitigation by microalgal photosynthesis. Bull. Korean Chem. Soc. 24:1763-1766. https://doi.org/10.5012/bkcs.2003.24.12.1763
  16. Kang Z, B-H Kim, H-M Oh and H-S Kim. 2013. Production of Biodiesel and Nutrient Removal of Municipal Wastewater using a Small Scale Raceway Pond. Korean J. Microbiol. Biotechnol. 41:207-214. https://doi.org/10.4014/kjmb.1301.01001
  17. Kang Z, B-H Kim, S-Y Shin, H-M Oh and H-S Kim. 2012. Municipal Wastewater Treatment and Microbial Diversity Analysis of Microalgal Mini Raceway Open Pond. Kor. J. Microbiol. 48:192-199. https://doi.org/10.7845/kjm.2012.036
  18. Lee J, D-H Cho, R Ramanan, B-H Kim, H-M Oh and H-S Kim. 2013. Microalgae-associated bacteria play a key role in the flocculation of Chlorella vulgaris. Bioresour. Technol. 131: 195-201. https://doi.org/10.1016/j.biortech.2012.11.130
  19. Lee J-Y, C Yoo, S-Y Jun, C-Y Ahn and H-M Oh. 2010. Comparison of several methods for effective lipid extraction from microalgae. Bioresour. Technol. 101:S75-S77. https://doi.org/10.1016/j.biortech.2009.03.058
  20. Lee S-B, K-M Cho, N-H Baik, J-J Lee, Y-J Oh, T-I Park and K-J Kim. 2011. Effects of application method of pig compost and liquid pig manure on yield of whole crop barley (Hordeum vulgare L.) and chemical properties of soil in Gyehwa reclaimed land. Korean J. Soil Sci. Fert. 44:353-360. https://doi.org/10.7745/KJSSF.2011.44.3.353
  21. Ma F and MA Hanna. 1999. Biodiesel production: a review. Bioresour. Technol. 70:1-15. https://doi.org/10.1016/S0960-8524(99)00025-5
  22. Mandal S and N Mallick. 2009. Microalga Scenedesmus obliquus as a potential source for biodiesel production. Appl. Microbiol. Biotechnol. 84:281-291. https://doi.org/10.1007/s00253-009-1935-6
  23. MIFAFF. 2010. Discharges amounts of livestock manure and resource recycling. Ministry of Food, Agriculture, Forestry and Fisheries. Seoul. Korea.
  24. Morris I and PJ Syrett. 1963. The development of nitrate reductase in Chlorella and its repression by ammonium. Archiv. Mikrobiol. 47:32-41. https://doi.org/10.1007/BF00408287
  25. Omar HH. 2002. Bioremoval of zinc ions by Scenedesmus obliquus and Scenedesmus quadricauda and its effect on growth and metabolism. Int. Biodeterior. Biodegrad. 50:95-100. https://doi.org/10.1016/S0964-8305(02)00048-3
  26. Park JM, TJ Lim, SE Lee and IB Lee. 2011. Effect of Pig Slurry Fertigation on Soil Chemical Properties and Growth and Development of Cucumber (Cucumis sativus L.). Korean J. Soil Sci. Fert. 44:194-199. https://doi.org/10.7745/KJSSF.2011.44.2.194
  27. Phan AN and TM Phan. 2008. Biodiesel production from waste cooking oils. Fuel 87:3490-3496. https://doi.org/10.1016/j.fuel.2008.07.008
  28. Pittman JK, AP Dean and O Osundeko. 2011. The potential of sustainable algal biofuel production using wastewater resources. Bioresour. Technol. 102:17-25. https://doi.org/10.1016/j.biortech.2010.06.035
  29. Scragg AH, J Morrison and SW Shales. 2003. The use of a fuel containing Chlorella vulgaris in a diesel engine. Enzyme Microb. Technol. 33:884-889. https://doi.org/10.1016/j.enzmictec.2003.01.001
  30. Sharma YC, B Singh and SN Upadhyay. 2008. Advancements in development and characterization of biodiesel: A review. Fuel 87:2355-2373. https://doi.org/10.1016/j.fuel.2008.01.014
  31. Smith F and JF Thompson. 1971. Regulation of nitrate reductase in Chlorella vulgaris. Plant Physiol. 48:224. https://doi.org/10.1104/pp.48.2.224
  32. Smith VH, BSM Sturm, FJ deNoyelles and SA Billings. 2010. The ecology of algal biodiesel production. Trends Ecol. Evol. 25:301-309. https://doi.org/10.1016/j.tree.2009.11.007
  33. Spolaore P, C Joannis-Cassan, E Duran and A Isambert. 2006. Commercial applications of microalgae. J. Biosci. Bioeng. 101:87-96. https://doi.org/10.1263/jbb.101.87
  34. Stockenreiter M, A-K Graber, F Haupt and H Stibor. 2012. The effect of species diversity on lipid production by microalgal communities. J. Appl. Phycol. 24:45-54. https://doi.org/10.1007/s10811-010-9644-1
  35. Syrett PJ and I Morris. 1963. The inhibition of nitrate assimilation by ammonium in chlorella. Biochim. Biophys. Acta 67:566-575. https://doi.org/10.1016/0926-6569(63)90277-3
  36. Weis JJ, DS Madrigal and BJ Cardinale. 2008. Effects of algal diversity on the production of biomass in homogeneous and heterogeneous nutrient environments: a microcosm experiment. PLoS one 3:e2825. https://doi.org/10.1371/journal.pone.0002825
  37. Yun Y-S, J Park and J-W Yang. 1996. Enhancement of $CO_{2}$ tolerance of Chlorella vulgaris by gradual increase of $CO_{2}$ concentration. Biotechnol. Tech. 10:713-716.
  38. Yun YS, SB Lee, JM Park, CI Lee and JW Yang. 1997. Carbon dioxide fixation by algal cultivation using wastewater nutrients. J. Chem. Technol. Biotechnol. 69:451-455. https://doi.org/10.1002/(SICI)1097-4660(199708)69:4<451::AID-JCTB733>3.0.CO;2-M