• Title/Summary/Keyword: micro-via

Search Result 501, Processing Time 0.025 seconds

Genome-Wide Identification and Classification of MicroRNAs Derived from Repetitive Elements

  • Gim, Jeong-An;Ha, Hong-Seok;Ahn, Kung;Kim, Dae-Soo;Kim, Heui-Soo
    • Genomics & Informatics
    • /
    • v.12 no.4
    • /
    • pp.261-267
    • /
    • 2014
  • MicroRNAs (miRNAs) are known for their role in mRNA silencing via interference pathways. Repetitive elements (REs) share several characteristics with endogenous precursor miRNAs. In this study, 406 previously identified and 1,494 novel RE-derived miRNAs were sorted from the GENCODE v.19 database using the RepeatMasker program. They were divided into six major types, based on their genomic structure. More novel RE-derived miRNAs were confirmed than identified as RE-derived miRNAs. In conclusion, many miRNAs have not yet been identified, most of which are derived from REs.

The expression and functional roles of microRNAs in stem cell differentiation

  • Shim, Jiwon;Nam, Jin-Wu
    • BMB Reports
    • /
    • v.49 no.1
    • /
    • pp.3-10
    • /
    • 2016
  • microRNAs (miRNAs) are key regulators of cell state transition and retention during stem cell proliferation and differentiation by post-transcriptionally downregulating hundreds of conserved target genes via seed-pairing in their 3' untranslated region. In embryonic and adult stem cells, dozens of miRNAs that elaborately control stem cell processes by modulating the transcriptomic context therein have been identified. Some miRNAs accelerate the change of cell state into progenitor cell lineages—such as myoblast, myeloid or lymphoid progenitors, and neuro precursor stem cells—and other miRNAs decelerate the change but induce proliferative activity, resulting in cell state retention. This cell state choice can be controlled by endogenously or exogenously changing miRNA levels or by including or excluding target sites. This control of miRNA-mediated gene regulation could improve our understanding of stem cell biology and facilitate their development as therapeutic tools. [BMB Reports 2016; 49(1): 3-10]

Water Wetting Observation on a Superhydrophobic Hairy Plant Leaf Using Environmental Scanning Electron Microscopy

  • Yoon, Sun Mi;Ko, Tae-Jun;Oh, Kyu Hwan;Nahm, Sahn;Moon, Myoung-Woon
    • Applied Microscopy
    • /
    • v.46 no.4
    • /
    • pp.201-205
    • /
    • 2016
  • Functional surfaces in nature have been continuously observed because of their ability to adapt to the environment. To this end, methods such as scanning electron microscopy (SEM) have been widely used, and their wetting functions have been characterized via environmental SEM. We investigated the superhydrophobic hairy leaves of Pelargonium tomentosum, i.e., peppermint-scented geranium. Their surface features and wettability were studied at multiple-scales, i.e., macro-, micro-, and sub-micro scales. The surfaces of the investigated leaves showed superhydrophobicity at the macro-, and micro-scales. The wetting or condensing behavior was studied for molecule-size water vapors, which easily adhered to the hairy surface owing to their significantly lower size in comparison to that of the surface.

3D-inertia Valve Component for Centrifugal Force-based Micro Fluid Control (원심력기반 3차원 관성밸브 모델링을 통한 정밀 미세유체제어)

  • Kang, Dong Hee;Kim, Na Kyong;Kang, Hyun Wook
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.1
    • /
    • pp.12-17
    • /
    • 2021
  • A three-dimensional slope valve component is used for controlling micro volume of liquid on a centrifugal force-based microfluidic disk platform, also called a lab-on-a-disk. The modeling factor of the slope valve component is determined to centrifugal force for liquid passing the crest of a slope valve via variation of slope length and angle as well as the radius to start point of slope valve. The centrifugal force is calculated by the equilibrium equation of the capillary and gravitational forces according to the microchannel surface roughness and the liquid volume, respectively. As a result, the slope valve is analyzed by the minimum angular velocity for liquid passing at crest point and the ratio between the length of micro liquid and slope length to obtain the factors for optimal slope angle modeling.

3-Dimensional Micro Solder Ball Inspection Using LED Reflection Image

  • Kim, Jee Hong
    • International journal of advanced smart convergence
    • /
    • v.8 no.3
    • /
    • pp.39-45
    • /
    • 2019
  • This paper presents an optical technique for the three-dimensional (3D) shape inspection of micro solder balls used in ball-grid array (BGA) packaging. The proposed technique uses an optical source composed of spatially arranged light-emitting diodes (LEDs) and the results are derived based on the specular reflection characteristics of the micro solder balls for BGA A vision system comprising a camera and LEDs is designed to capture the reflected images of multiple solder balls arranged arbitrarily on a tray and the locations of the LED point-light-source reflections in each ball are determined via image processing, for shape inspection. The proposed methodology aims to determine the presence of defects in 3D BGA shape using the statistical information of the relative positions of multiple BGA balls, which are included in the image. The presence of the BGA balls with large deviations in relative position imply the inconsistencies in their shape. Experiments were conducted to verify that the proposed method could be applied to inspection without sophisticated mechanism and productivity problem.

Prediction of the stability of badminton net via numerical and mathematical modeling

  • Ke Cui;Jiao Yuan;Liang Liu
    • Advances in concrete construction
    • /
    • v.15 no.2
    • /
    • pp.127-135
    • /
    • 2023
  • The present paper develops application of TSDT and MCST to analysis of a FG cylindrical micro-shell. The present model may be used as a sensor applicable in badminton net to detect contact. The radial and axial displacement components are described based on TSDT for more accurate analysis. The effect of small scales is accounted based on MCST. The solution is presented for a SS boundary condition to account the influence of various important parameters. A comparative analysis is presented to examine the effect of order of employed shear deformation theory on the axial and radial displacements.

One-Step Nanoscale Patterning of Silver Ionic Ink via Elastic Mold Deformation (탄성 몰드 변형을 이용한 은 이온 잉크의 원-스텝 나노스케일 패터닝)

  • Yong Suk Oh
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.252-256
    • /
    • 2023
  • A one-step method for nanoscale patterning of silver ionic ink on a substrate is developed using a microscale, elastic mold deformation. This method yields unique micro/nanoscale metallic structures that differ from those produced using the original molds. The linewidth of these metallic structures is significantly reduced (approximately 10 times) through the sidewall deformation of the original mold cavity on a thin liquid film, as verified by finite element analysis. The process facilitates the fabrication of various, isolated and complex micro/nanoscale metallic structures with negligible residual layers at low cost and high throughput. These structures can be utilized for various applications, including optoelectronics, wearable sensors, and metaverse-related devices. Our approach offers a promising tool for manipulation and fabrication of micro/nanoscale structures of various functional materials.

Treatment of Industrial Wastewater with High Concentration of Hydrocarbons Using Membrane Reactors

  • Bienati, B.;Bottino, A.;Comite, A.;Ferrari, F.;Firpo, R.;Capannelli, G.
    • Membrane Journal
    • /
    • v.17 no.2
    • /
    • pp.112-117
    • /
    • 2007
  • The application of membrane bioreactors for the depuration of wastewater coming from the washing of mineral oil storage tanks is described. Microfiltration hollow-fibre membranes were used in the submerged configuration. Filtration tests were carried out with a biomass concentration of about 15 g/L in order to assess the critical flux of the hollow fibre membrane used. Then particular care was taken in carrying out the performance runs in the sub-critical flux region. The reactor performance was very high, with removal efficiencies ranging between 93% and 97% also when the concentration of hydrocarbon was very high. Some kinetic parameters for the COD and the hydrocarbon removal were estimated.

Study of Via-Typed Air-Gap for Logic Devices Applications below 45 nm Node

  • Kim, Sang-Yong;Kim, Il-Soo;Jeong, Woo-Yang
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.4
    • /
    • pp.131-134
    • /
    • 2011
  • Back-end-of-line using ultra low-k (ULK; k < 2.5) has been required to reduce resistive capacitance beyond 45 nmtechnologies, because micro-processing units need higher speed and density. There are two strategies to manufacture ULK inter-layer dielectric (ILD) materials using an air-gap (k = 1). The former ULK and calcinations of ILD degrade the mechanical strength and induce a high cost due to the complication of following process, such as chemical mechanical polishing and deposition of the barrier metal. In contrast, the air-gap based low-k ILD with a relatively higher density has been researched on the trench-type with activity, but it has limited application to high density devices due to its high air-gap into the next metal layer. The height of air-gap into the next metal layer was reduced by changing to the via-typed air-gap, up to about 50% compared to that of the trench-typed air-gap. The controllable ULK was easily fabricated using the via-typed air-gap. It is thought that the via-type air-gap made the better design margin like via-patterning in the area with the dense and narrow lines.

The Inhibition of MicroRNA-139-5p Promoted Osteoporosis of Bone Marrow-Derived Mesenchymal Stem Cells by Targeting Wnt/Beta-Catenin Signaling Pathway by NOTCH1

  • Feng, Yimiao;Wan, Pengbo;Yin, Linling;Lou, Xintian
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.3
    • /
    • pp.448-458
    • /
    • 2020
  • We investigated the therapeutic effects of microRNA-139-5p in relation to osteoporosis of bone marrow-derived mesenchymal stem cell (BMSCs) and its underlying mechanisms. In this study we used a dexamethasone-induced in vivo model of osteoporosis and BMSCs were used for the in vitro model. Real-time quantitative polymerase chain reaction (RT-PCR) and gene chip were used to analyze the expression of microRNA-139-5p. In an osteoporosis rat model, the expression of microRNA-139-5p was increased, compared with normal group. Down-regulation of microRNA-139-5p promotes cell proliferation and osteogenic differentiation in BMSCs. Especially, up-regulation of microRNA-139-5p reduced cell proliferation and osteogenic differentiation in BMSCs. Overexpression of miR-139-5p induced Wnt/β-catenin and down-regulated NOTCH1 signaling in BMSCs. Down-regulation of miR-139-5p suppressed Wnt/β-catenin and induced NOTCH1 signaling in BMSCs. The inhibition of NOTCH1 reduced the effects of anti-miR-139-5p on cell proliferation and osteogenic differentiation in BMSCs. Activation of Wnt/β-catenin also inhibited the effects of anti-miR-139-5p on cell proliferation and osteogenic differentiation in BMSCs. Taken together, our results suggested that the inhibition of microRNA-139-5p promotes osteogenic differentiation of BMSCs via targeting Wnt/β-catenin signaling pathway by NOTCH1.