• Title/Summary/Keyword: micro-via

Search Result 501, Processing Time 0.032 seconds

Reinforced Polymer/Clay Nanocomposite Foams with Open Cell Prepared via High Internal Phase Emulsion Polymerization (고내상 에멀션 중합에 의해 제조된 열린 기공을 갖는 고장도 고분자/점토 나노복합 발포체)

  • Song, In-Hee;Kim, Byung-Chul;Lee, Seong-Jae
    • Polymer(Korea)
    • /
    • v.32 no.2
    • /
    • pp.183-188
    • /
    • 2008
  • Reinforced open cell micro structured foams were prepared by the polymerization of high internal phase emulsions incorporating inorganic thickeners. Organoclays were used as oil phase thickener, and sodium montmorillonite was used as aqueous phase thickener. Rheological properties of emulsions increased as oil phase thickener concentration and agitation speed increased, due to the reduced drop size reflecting both competition between continuous and dispersed phase viscosities and increase of shear force. Drop size variation with thickener concentration could be explained by a dimensional analysis between capillary number and viscosity ratio. Upon the foams polymerized by the emulsions, compression properties, such as crush strength and Young's modulus were measured and compared. Among the microcellular foams, the foam incorporated with an organoclay having reactive group showed outstanding properties. It is speculated that the exfoliated silicate layers inside polystyrene matrix, resulting in nanocomposite foam, are the main reason why this foam has enhanced properties.

The Development of a Multi-sensor Payload for a Micro UAV and Generation of Ortho-images (마이크로 UAV 다중영상센서 페이로드개발과 정사영상제작)

  • Han, Seung Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1645-1653
    • /
    • 2014
  • In general, RGB, NIR, and thermal images are used for obtaining geospatial data. Such multiband images are collected via devices mounted on satellites or manned flights, but do not always meet users' expectations, due to issues associated with temporal resolution, costs, spatial resolution, and effects of clouds. We believe high-resolution, multiband images can be obtained at desired time points and intervals, by developing a payload suitable for a low-altitude, auto-piloted UAV. To achieve this, this study first established a low-cost, high-resolution multiband image collection system through developing a sensor and a payload, and collected geo-referencing data, as well as RGB, NIR and thermal images by using the system. We were able to obtain a 0.181m horizontal deviation and 0.203m vertical deviation, after analyzing the positional accuracy of points based on ortho mosaic images using the collected RGB images. Since this meets the required level of spatial accuracy that allows production of maps at a scale of 1:1,000~5,000 and also remote sensing over small areas, we successfully validated that the payload was highly utilizable.

Effects of miR-155 Antisense Oligonucleotide on Breast Carcinoma Cell Line MDA-MB-157 and Implanted Tumors

  • Zheng, Shu-Rong;Guo, Gui-Long;Zhai, Qi;Zou, Zhang-Yong;Zhang, Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.4
    • /
    • pp.2361-2366
    • /
    • 2013
  • Diverse studies have shown that miR-155 is overexpressed in different tumor types. However, the precise molecular mechanism of the ectopic expression of miR-155 in breast cancer is still poorly understood. To further explore the role of miR-155 in breast tumorigenesis, we here assessed the influence of miR-155 antisense oligonucleotide (miR-155 ASO) on MDA-MB-157 cell viability and apoptosis in vitro. Furthermore, the effects of inhibitory effects of miR-155 on the growth of xenograft tumors in vivo were determined with performance of immunohistochemistry to detect expression of caspase-3, a pivotal apoptosis regulatory factor, in xenografts. Transfection efficiency detected by laser confocal microscope was higher than 80%. The level of miR-155 expression was significantly decreased (P<0.05) in the cells transfected with miR-155 ASO, compared with that in cells transfected with a negative control. After being transfected with miR-155 ASO, the viability of MDA-MB-157 cells was reduced greatly (P<0.05) and the number of apoptotic cells was increased significantly. Additionally, miR-155 ASO inhibited the growth of transplanted tumor in vivo and significantly increased the expression of caspase-3. Taken together, our study revealed that miR-155 ASO can induce cell apoptosis and inhibit cell proliferation in vitro. Moreover, miR-155 ASO could significantly repress tumor growth in vivo, presumably by inducing apoptosis via caspase-3 up-regulation. These findings provide experimental evidence for using miR-155 as a therapeutic target of breast carcinoma.

Quartz Crystal Microbalance Modified by a Novel Vapor Diffused Molecular Assembly Technique and Measurement of Chiral Mandelic Acid (기상확산 자기조립화법에 QCM수식과 Madelic Acid 키랄물질 측정)

  • Kim, JongMin;Kim, SeungJin;Woo, SunYoung;Jang, SukHee;Kim, Woo-Sik;Chang, SangMok
    • Korean Chemical Engineering Research
    • /
    • v.48 no.5
    • /
    • pp.574-582
    • /
    • 2010
  • In this study, the possibility of a quartz crystal micro-balance(QCM) modification of crystallization of L-Penicillamine and D-Penicillamine with a Vapor Diffused Molecular Assembly Technique and its application to the R-(-)-Mandelic acid and S-(+)- Mandelic acid measurement was investigated. The 3-dimensional structures of L-Penicillamine and D-Penicillamine on the surface of QCM were verified to be different from each other through QCM and AFM analyses. The D-Penicillamine modified QCM had specific recognition to the R-(-)-Mandelic acid, but L-Penicillamine modified QCM had no specificity to the R-(-)-Mandelic acid and S-(+)- Mandelic acid. From these results, it was known that the QCM could be modified with various selective meterials via VDMA, and the chiral isomer such as a Mandelic acid isomer could be detected by using a modified QCM.

Synthesis and Characterization of Sm2O3 Doped CeO2 Nanopowder by Reverse Micelle Processing (역마이셀을 이용한 Sm2O3 도핑 CeO2 나노분말의 합성 및 특성)

  • Kim, Jun-Seop;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.22 no.4
    • /
    • pp.207-210
    • /
    • 2012
  • The preparation of $Sm_2O_3$ doped $CeO_2$ in Igepal CO-520/cyclohexane reverse micelle solutions has been studied. In the present work, we synthesized nanosized $Sm_2O_3$ doped $CeO_2$ powders by reverse micelle process using aqueous ammonia as the precipitant; hydroxide precursor was obtained from nitrate solutions dispersed in the nanosized aqueous domains of a micro emulsion consisting of cyclohexane as the oil phase, and poly (xoyethylene) nonylphenylether (Igepal CO-520) as the non-ionic surfactant. The synthesized and calcined powders were characterized by Thermogravimetry-differential thermal analysis (TGA-DTA), X-ray diffraction analysis (XRD), and Transmission electron microscopy (TEM). The crystallite size was found to increase with increase in water to surfactant (R) molar ratio. Average particle size and distribution of the synthesized $Sm_2O_3$ doped $CeO_2$ were below 10 nm and narrow, respectively. TG-DTA analysis shows that phase of $Sm_2O_3$ doped $CeO_2$ nanoparticles changed from monoclinic to tetragonal at approximately $560^{\circ}C$. The phase of the synthesized $Sm_2O_3$ doped $CeO_2$ with heating to $600^{\circ}C$ for 30 min was tetragonal $CeO_2$. This study revealed that the particle formation process in reverse micelles is based on a two step model. The rapid first step is the complete reduction of the metal to the zero valence state. The second step is growth, via reagent exchanges between micelles through the inter-micellar exchange.

Plantlet Regeneration via Somatic Embryogenesis from Hypocotyls of Common Buckwheat (Fagopyrum esculentum Moench.)

  • Kwon, Soo-Jeong;Han, Myong-Hae;Huh, Yoon-Sun;Roy, Swapan Kumar;Lee, Chul-Won;Woo, Sun-Hee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.58 no.4
    • /
    • pp.331-335
    • /
    • 2013
  • Buckwheat sprout is used as vegetable, and also flour for making noodles, and so on. Currently, information about tissue culture in buckwheat is limited and restricted to micro-propagation. We carried out somatic embryogenesis and plant regeneration using hypocotyl segments as explant of the cultivated buckwheat species, Fagopyrum esculentum which differs from existing studies in the growth regulator combinations used. Maximum callus regeneration was induced on MS medium containing 2,4-dichlorophenoxyacetic acid (2,4-D) $2.0mg{\cdot}L^{-1}$, benzyladenine (BA) $1.0mg{\cdot}L^{-1}$ and 3% sucrose. Friable callus was transferred to solidified MS media containing BA ($1.0mg{\cdot}L^{-1}$) with various concentrations of 2,4-dichlorophenoxyacetic acid for the induction of embryogenesis. The optimum concentrations of growth regulators (for regeneration of plantlet) were indole-3-acetic acid ($2.0mg{\cdot}L^{-1}$), Kinetin ($1.0mg{\cdot}L^{-1}$), BA ($1.0mg{\cdot}L^{-1}$). Only 2,4-D did not show any significant effect on callus induction or embryogenesis. Regeneration of embryonic callus varied from 5% to 20%. Whole plants were obtained at high frequencies when the embryogenic calli with somatic embryos and organized shoot primordia were transferred to MS media with 3% sucrose. The main objective of this research was to develop an efficient protocol for plant regeneration for common buckwheat, and to apply in future for genetic transformation.

Electrical Switching Characteristics of Ge-Se Thin Films for ReRAM Cell Applications

  • Kim, Jang-Han;Nam, Ki-Hyun;Chung, Hong-Bay
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.343-344
    • /
    • 2012
  • It has been known since the mid 1960s that Ag can be photodissolved in chalcogenide glasses to form materials with interesting technological properties. In the 40 years since, this effect has been used in diverse applications such as the fabrication of relief images in optical elements, micro photolithographic schemes, and for direct imaging by photoinduced Ag surface deposition. ReRAM, also known as conductive bridging RAM (CBRAM), is a resistive switching memory based on non-volatile formation and dissolution of a conductive filament in a solid electrolyte. Especially, Ag-doped chalcogenide glasses and thin films have become attractive materials for fundamental research of their structure, properties, and preparation. Ag-doped chalcogenide glasses have been used in the formation of solid electrolyte which is the active medium in ReRAM devices. In this paper, we investigated the nature of thin films formed by the photo-dissolution of Ag into Ge-Se glasses for use in ReRAM devices. These devices rely on ion transport in the film so produced to create electrically programmable resistance states. [1-3] We have demonstrated functionalities of Ag doped chalcogenide glasses based on their capabilities as solid electrolytes. Formation of such amorphous systems by the introduction of Ag+ ions photo-induced diffusion in thin chalcogenide films is considered. The influence of Ag+ ions is regarded in terms of diffusion kinetics and Ag saturation is related to the composition of the hosting material. Saturated Ag+ ions have been used in the formation of conductive filaments at the solid electrolyte which is the active medium in ReRAM devices. Following fabrication, the cell displays a metal-insulator-metal structure. We measured the I-V characteristics of a cell, similar results were obtained with different via sizes, due to the filamentary nature of resistance switching in ReRAM cell. As the voltage is swept from 0 V to a positive top electrode voltage, the device switches from a high resistive to a low resistive, or set. The low conducting, or reset, state can be restored by means of a negative voltage sweep where the switch-off of the device usually occurs.

  • PDF

Synthesis and Evaluation of Variable Temperature-Electrical Resistance Materials Coated on Metallic Bipolar Plates (온도 의존성 가변 저항 발열체로 표면 처리된 금속 분리판 제조 및 평가)

  • Jung, Hye-Mi;Noh, Jung-Hun;Im, Se-Joon;Lee, Jong Hyun;Ahn, Byung Ki;Um, Sukkee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.73.1-73.1
    • /
    • 2010
  • For the successful cold starting of a fuel cell engine, either internal of external heat supply must be made to overcome the formation of ice from water below the freezing point of water. In the present study, switchable vanadium oxide compounds as variable temperature-electrical resistance materials onto the surface of flat metallic bipolar plates have been prepared by a dip-coating technique via an aqueous sol-gel method. Subsequently, the chemical composition and micro-structure of the polycrystalline solid thin films were analyzed by X-ray diffraction, X-ray fluorescence spectroscopy, and field emission scanning electron microscopy. In addition, it was carefully measured electrical resistance hysteresis loop over a temperature range from $-20^{\circ}C$ to $80^{\circ}C$ using the four-point probe method. The experimental results revealed that the thin films was mainly composed of Karelianite $V_2O_3$ which acts as negative temperature coefficient materials. Also, it was found that thermal dissipation rate of the vanadium oxide thin films partially satisfy about 50% saving of the substantial amount of energy required for ice melting at $-20^{\circ}C$. Moreover, electrical resistances of the vanadium-based materials converge on an extremely small value similar to that of pure flat metallic bipolar plates at higher temperature, i.e. $T{\geq}40^{\circ}C$. As a consequence, experimental studies proved that it is possible to apply the variable temperature-electrical resistance material based on vanadium oxides for the cold starting enhancement of a fuel cell vehicle and minimize parasitic power loss and eliminate any necessity for external equipment for heat supply in freezing conditions.

  • PDF

BIAN N-Heterocyclic Gold Carbene Complexes induced cytotoxicity in human cancer cells via upregulating oxidative stress

  • Farooq, Muhammad;Taha, Nael Abu;Butorac, Rachel R;Evans, Daniel A;Elzatahry, Ahmed A;Wadaan, Mohammad AM;Cowley, Alan H
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.16
    • /
    • pp.7003-7006
    • /
    • 2015
  • Background: Nanoparticles of gold and silver are offering revolutionary changes in the field of cancer therapy. N-heterocyclic carbene (NHC) metal complexes possess diverse biological activities and are being investigated as potential chemotherapeutic agents. The purpose of this study was to examine the cytotoxicity and possible mechanisms of action of two types of newly synthesized nanofiber composites containing BIAN N-heterocyclic gold carbene complexes in two types of human cancer cells, namely breast cancer (MCF7) and liver cancer (HepG2) cells and also in normal human embryonic kidney cells (HEK 293). Materials and Methods: Cytotoxicity was assessed by MTT cell viability assay and oxidative stress by checking the total glutathione level. Results: Both compounds affected the cell survival of the tested cell lines at very low concentrations (IC50 values in the micro molar range) as compared to a well-known anti-cancer drug, 5 fluorouracil. A 60-80% depletion in total glutathione level was detected in treated cells. Conclusions: Reduction in total glutathione level is one of the biochemical pathways for the induction of oxidative stress which in turn could be a possible mechanism of action by which these compounds induce cytotoxicity in cancer cell lines. The in vitro toxicity towards cancer cells found here means that these molecules could be potential anticancer candidates.

Tobacco-Related Chronic Illnesses: A Public Health Concern for Jamaica

  • Crawford, Tazhmoye V.;McGrowder, Donovan A.;Barnett, Jasper D.;McGaw, Barbara A.;McKenzie, Irving F.;James, Leslie G.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.9
    • /
    • pp.4733-4738
    • /
    • 2012
  • Background: Tobacco use is a leading cause of preventable morbidity and mortality from non-communicable diseases. The objectives of the study were to determine the percentage of annual income used to purchase tobacco-related products and treat tobacco-related illnesses, and assess the characteristics of smokers and their awareness of the health-related risks of smoking. Method: Stratified and snowball sampling methods were used to obtain information (via a 17-item, close-ended questionnaire) from 85 adult respondents (49 males and 36 females). The instrument comprised of demographic characteristics, smoking behavioural/lifestyle, health, and micro socio-economics. Results: There were no significant differences between individuals who were affected by chronic obstructive pulmonary disorder (COPD) (14.1%) and cardiovascular disease (18.8%). It was found that respondents spend 30-39% of their annual income on tobacco-related products. Forty percent (40.0%) and 41.7% of respondents with lung cancer and COPD respectively spend more than 50% of their annual income to treat these diseases. The majority (80%) of those who continues to consume tobacco-related products were uncertain as to why they were doing it. Not all the smokers were aware of the dangers of tobacco consumption despite their level of education. Conclusion: The majority of the respondents who had tobacco-related illnesses such as lung cancer and COPD spend a significant amount of their income on their health care. Not all the smokers were aware of the dangers of tobacco consumption despite their level of education. This suggests the need for increase public awareness where both smokers and non smokers are being fully or adequately informed about the dangers or health risks of tobacco consumption.