• Title/Summary/Keyword: micro-strain

Search Result 493, Processing Time 0.022 seconds

EVALUATION AND DEVELOPMENT OF DIGITAL DEVICE FOR MEASURING PROXIMAL TOOTH CONTACT TIGHTNESS (디지털 방식의 인접면 접촉강도 측정장치의 개발 및 평가)

  • Choi, Woo-Jin;Kim, Kyung-Hwa;Kim, Jin-A;Kang, Dong-Wan;Oh, Sang-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.5
    • /
    • pp.687-695
    • /
    • 2007
  • Statement of problem: The proper contact relation between adjacent teeth in each arch plays an important role in the stability and maintenance of the integrity of the dental arches. Proximal contact has been defined as the area of a tooth that is in close association, connection, or touch with an adjacent tooth in the same arch. Purpose: The aim of this study was to develop a digital device for measuring the proximal tooth contact tightness by pulling a thin stainless steel strip (2mm wide, 0.03mm thick) inserted between proximal tooth contact. Material and method: This device consists of measuring part, sensor part, motor part and body part. The stainless steel strip was connected to a stain gauge. The strain gauge was designed to convert the frictional force into a compressive force. This compressive force was detected as a electrical signal and the electrical signal was digitalized by a A/D converter. The digital signals were displayed by a micro-processor. The pulling speed was 8mm/s. Results: For testing reliability of the device in vivo, two healthy young adults (A, B) participated in this experiment. The tightness of proximal tooth contact between the second premolar and the first molar of mandible (subject A) and maxilla (subject B) was measured fifteen times for three days at rest. We double-checked the accuracy of the device with a Universal Testing Machine. Output signals from the Universal Testing Machine and the measuring device were compared. Regression analysis showed high linearity between these two signals. In vivo test, no significant differences were found between measurements. Conclusion: This device has shown to he capable of producing reliable and reproducible results in measuring proximal tooth contact. Therefore, it was considered that this device was appropriate to apply clinically.

An original device for train bogie energy harvesting: a real application scenario

  • Amoroso, Francesco;Pecora, Rosario;Ciminello, Monica;Concilio, Antonio
    • Smart Structures and Systems
    • /
    • v.16 no.3
    • /
    • pp.383-399
    • /
    • 2015
  • Today, as railways increase their capacity and speeds, it is more important than ever to be completely aware of the state of vehicles fleet's condition to ensure the highest quality and safety standards, as well as being able to maintain the costs as low as possible. Operation of a modern, dynamic and efficient railway demands a real time, accurate and reliable evaluation of the infrastructure assets, including signal networks and diagnostic systems able to acquire functional parameters. In the conventional system, measurement data are reliably collected using coaxial wires for communication between sensors and the repository. As sensors grow in size, the cost of the monitoring system can grow. Recently, auto-powered wireless sensor has been considered as an alternative tool for economical and accurate realization of structural health monitoring system, being provided by the following essential features: on-board micro-processor, sensing capability, wireless communication, auto-powered battery, and low cost. In this work, an original harvester device is designed to supply wireless sensor system battery using train bogie energy. Piezoelectric materials have in here considered due to their established ability to directly convert applied strain energy into usable electric energy and their relatively simple modelling into an integrated system. The mechanical and electrical properties of the system are studied according to the project specifications. The numerical formulation is implemented with in-house code using commercial software tool and then experimentally validated through a proof of concept setup using an excitation signal by a real application scenario.

A Study of the Free Amino Acids in the Plasma and Erythrocytes in the Male Adult Rats Fed with the Low Protein Diets (低蛋白營養에 있어서 成熟흰쥐의 Plasma 및 Erythrocytes Free Amino Acids에 대하여)

  • Hyun-Ki Lee
    • Journal of the Korean Chemical Society
    • /
    • v.15 no.2
    • /
    • pp.69-84
    • /
    • 1971
  • An analysis of the free amino acid contained in the plasma and erythrocytes of the six groups of Wistar Strain male adult rats (body weight 200-300g) having fasted for sixteen hours was made by means of the HITACHI Amino Acid Autoanalyzer and the result of which was corrected with RC-24B TOMY Micro Hematocrit Centrifuge. There was a depression of the plasma and erythrocytes free amino acid level on the no-protein diet with ad libitum feeding. But on the 20% casein diet there was an elevation in the levels of free amino acid and consequently alanine, glysine, lysine, serine and arginine level in the erythrocytes and threonine, glutamic acid and taurine level in the plasma increased on the high protein diet. There was more plasma and erythrocytes free amino acid level on the 5% casein- 30% fat diet than on the 5% casein-no fat diet with pair-feeding. In comparison, on the low calorie diet more free amino acids were found in plasma than in erythrocytes, but on the higher calorie diet more free amino acids were found in the erythrocytes than in the plasma. On the 20% casein-30% fat diet with pair-feeding the erythrocytes free amino acids level increased but in plasma free amino acids level decreased. Such as an opposite result was given in plasma and erythrocytes free amino acids level. In the pair-fed four groups, erythrocytes per plasma generally increased in the rate of less than 10.0 as the calorie increased. The essential amino acid per non essential amino acid generally increased in the ratio as protein level and calorie increased, and that ratio range was from 0.2 to 0.7. And essential amino acid per non essential amino acid of plasma was higher than that of erythrocytes.

  • PDF

Analysis of Axial Restrained Behavior of Early-Age Concrete Using Sea-Sand (해사를 사용한 초기재령 콘크리트의 일축 구속 거동 해석)

  • 박상순;송하원;조호진;변근주
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.331-340
    • /
    • 2002
  • In this paper, finite element analysis is applied for simulation of cracks due to restraining autogenous and drying shrinkage at early-age concrete. A micro-level heat hydration model and a shrinkage prediction model along with a moisture diffusion model are adopted for the finite element analysis. Then, an axial restraint test is carried out for concrete specimens containing different amounts of chloride ions to evaluate stress development and cracking due to the restraining shrinkages at early ages. Test results show that the increase of contents of chloride ions increases restrained stress, but does not increase strength. By this increase of shrinkage strain at early-age, time to occur the crack is accelerated. Finally, stress development and cracking of concrete specimens containing different amount of chloride ions we simulated using the finite element analysis. Results of the analysis using the Proposed model are verified by comparison with test results.

Basic Mixing and Mechanical Tests on High Ductile Fiber Reinforced Cementless Composites (고인성 섬유보강 무시멘트 복합체의 기초 배합 및 역학 실험)

  • Cho, Chang-Geun;Lim, Hyun-Jin;Yang, Keun-Hyeok;Song, Jin-Kyu;Lee, Bang-Yeon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.2
    • /
    • pp.121-127
    • /
    • 2012
  • Cement has been traditionally used as a main binding material of high ductile fiber reinforced cementitious composites. The purpose of this paper is to investigate the feasibility of using alkali-activated slag and polyvinyl alcohol (PVA) fibers for manufacturing high ductile fiber reinforced cementless composites. Two mixture proportions with proper flowability and mortar viscosity for easy fiber mixing and uniform fiber dispersion were selected based on alkali activators. Then, the slump flow, compression, uniaxial tension and bending tests were performed on the mixes to evaluate the basic properties of the composites. The cementless composites showed an average slump flow of 465 mm and tensile strain capacity of approximately 2% of due to formation of multiple micro-cracks. Test results demonstrated a feasibility of manufacturing high ductile fiber reinforced composites without using cement.

Effect of Cyclic Freezing-Thawing on Compressive Strength of Decomposed Granite Soils (동결-융해 반복작용으로 인한 화강풍화토의 압축강도 특성 변화에 관한 연구)

  • Yoo, Chung-Sik;Shin, Boo-Nam
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.1
    • /
    • pp.19-28
    • /
    • 2011
  • This paper presents the results of an investigation into the effect of cyclic freezing-thawing on the compressive strength characteristics of decomposed granite soils. A plane strain compression (PSC) tests were performed on a series of test specimens with different freezing-thawing cycles and fine contents to investigate the change in compressive strength under the process of freezing-thawing cycles. Also performed were scanning electron microscope (SEM) tests to investigate the change in structural rearrangement from a micro-scale point of view. The test results showed that the soil particles tend to conglomerate when subject to cycles of freezing and thawing, and that the soil with less fines exhibited decreased shear strength due to the cyclic freezing-thawing while the soils with a larger fine content showed the opposite trend.

Stabilization of oily contaminated clay soils using new materials: Micro and macro structural investigation

  • Ghiyas, Seyed Mohsen Roshan;Bagheripour, Mohammad Hosein
    • Geomechanics and Engineering
    • /
    • v.20 no.3
    • /
    • pp.207-220
    • /
    • 2020
  • Clay soils have a big potential to become contaminated with the oil derivatives because they cover a vast area of the earth. The oil derivatives diffusion in the soil lead to soil contamination and changes the physical and mechanical properties of the soil specially clay soils. Soil stabilization by using new material is very important for geotechnical engineers in order to improve the engineering properties of the soil. The main subjects of this research are a- to investigate the effect of the cement and epoxy resin mixtures on the stabilization and on the mechanical parameters as well as the microstructural properties of clay soils contaminated with gasoline and kerosene, b- study on the phenomenon of clay concrete development. Practical engineering indexes such as Unconfined Compressive Strength (UCS), elastic modulus, toughness, elastic and plastic strains are all obtained during the course of experiments and are used to determine the optimum amount of additives (cement and epoxy resin) to reach a practical stabilization method. Microstructural tests were also conducted on the specimens to study the changes in the nature and texture of the soil. Results obtained indicated that by adding epoxy resin to the contaminated soil specimens, the strength and deformational properties are increased from 100 to 1500 times as that of original soils. Further, the UCS of some stabilized specimens reached 40 MPa which exceeded the strength of normal concrete. It is interesting to note that, in contrast to the normal concrete, the strength and deformational properties of such stabilized specimens (including UCS, toughness and strain at failure) are simultaneously increased which further indicate on suitability and applicability of the current stabilization method. It was also observed that increasing cement additive to the soil has negligible effect on the contaminated soils stabilized by epoxy resin. In addition, the epoxy resin showed a very good and satisfactory workability for the weakest and the most sensitive soils contaminated with oil derivatives.

Nonlinear Biaxial Shear Model for Fiber-Reinforced Cementitious Composite Panels (섬유보강 고인성 시멘트 복합체 패널의 2축 전단 비선형 모델)

  • Cho, Chang-Geun;Kim, Yun-Yong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.6
    • /
    • pp.597-605
    • /
    • 2009
  • The present study has been proposed a model for the in-plane shear behavior of reinforced(Engineered Cementitious Composite(ECC) panels under biaxial stress states. The model newly considers the high-ductile tensile characteristic of cracked ECC by its multiple micro-cracking mechanism, the compressive strain-softening characteristic of cracked ECC, and the shear transfer mechanism in the cracked interface of ECC element. A series of numerical analyses were performed, and the predicted curves were compared with experimental results. The proposed in-plane shear model, R-ECC-MCFT, was found to be well matched with the experimental results, and it was also demonstrated that reinforced ECC panel showed more improved in-plane shear strength and post peak behavior, in comparing with the conventional reinforced concrete panel.

Effect of Prostaglandin $E_1$ and Acetazolamide upon Carbonic Anhydrase Activity of Whole Blood in Rat (Prostaglandin $E_1$과 Acetazolamide가 흰쥐 전혈(全血)의 Carbonic Anhydrase 활성에 미치는 영향)

  • Park, Hyoung-Jin;Jo, Yang-Hyeok
    • The Korean Journal of Physiology
    • /
    • v.14 no.2
    • /
    • pp.1-5
    • /
    • 1980
  • This study was undertaken to investigate the influence of prostaglandin $E_1(PGE_1)$ upon the activity of carbonic anhydrase and upon the inhibitory action of acetazolamide on carbonic anhydrase. The heparinized blood was sampled by cardiac puncture from Sprague-Dawley strain rats under ether anesthesia and was hemolysed by adding distilled water 1,000 times the amount of the blood. The activity of carbonic anhydrase of 0.1 ml of the hemolysate was measured by Maren's simplified micro-method. In the first experiment, the 7 rats were used, and the activity was measured by adding 0.1 ml of various concentrations of $PGE_1$(0.5, 1.25, 2.5, 5.0, 10 and $20\;{\mu}g/ml$). In the second experiment, the 6 rats were used and the activity was measured by adding 0.1 ml of $PGE_1(5\;{\mu}g/ml)$ and 0.1 ml of acetazolamide$(6{\times}10^{-7}M/l)$ respectively or simultaneously. Obtained results were as follows: 1) The activity of carbonic anhydrase was significantly inhibited by $PGE_1$ at doses of $0.5{\sim}10\;{\mu}g/ml$, maximally at a dose of $2.5\;{\mu}g/ml$, but inhibition was no more observed at a dose of $20\;{\mu}g/ml$. 2) The activity of the acetazolamide group was significantly less than that of the control group. 3) The activity of the $PGE_1+acetazolamide$ group was significantly less than those of the $PGE_1$ group and the acetazolamide group. It is inferred from the above results that the $PGE_1$ inhibits the activity of carbonic anhydrase dose-dependently and strengthens the inhibitory effect of acetazolamide on carbonic anhydrase.

  • PDF

Genes Encoding Ribonucleoside Hydrolase 1 and 2 from Corynebacterium ammoniagenes

  • Lee, Jin-Ho;Kim, Hyun-Soo;Lee, Won-Sik;Park, Young-Hoon;Bang, Won-Gi
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2006.05a
    • /
    • pp.105-107
    • /
    • 2006
  • Two kinds of nucleoside hydrolases (NHs) encoded by rih1 and rih2 were cloned from Corynebacterium ammoniagenes using deoD- and gsk-defective Escherichia coli. Sequence analysis revealed that NH 1 was a protein of 337 aa with a deduced molecular mass of 35,892 Da, whereas NH 2 consisted of 308 aa with a calculated molecular mass of 32,310 Da. Experiments with crude extracts of IPTG-induced E. coli CGSC 6885(pTNU23) and 6885(pTNI12) indicated that the Rihl enzyme could catalyse the hydrolysis of uridine and cytidine and showed pyrimidine-specific ribonucleoside hydrolase activity. Rih2 was able to hydrolyse both purine and pyrimidine ribonucleosides with the following order of activity-inosine>adenosine>uridine>guanosine>xanthosine>cytidine-and was classified in the non-specific NHs family. rih1 and rih2 deletion mutants displayed a decrease in cell growth on minimal medium supplemented with pyrimidine and purine/pyrimidine nucleosides, respectively, compared with the wild-type strain. Growth of each mutant was substantially complemented by introducing rih1 and rih2, respectively. Furthermore, disruption of both rih1 and rih2 led to the inability of the mutant to utilize purine and pyrimidine nucleosides as sole carbon source on minimal medium. These results indicated that rih1 and rih2 play major roles in the salvage pathways of nucleosides in this micro-organism.

  • PDF