• Title/Summary/Keyword: micro-powder

Search Result 473, Processing Time 0.033 seconds

A study on the effect of binder properties on feedstock and micro powder injection molding process (마이크로 분말사출성형에서 바인더 물성이 피드스탁 및 성형공정에 미치는 영향에 관한 연구)

  • Lee, Won-sik;Kim, Yong-dae
    • Design & Manufacturing
    • /
    • v.11 no.3
    • /
    • pp.1-7
    • /
    • 2017
  • The fabrication process of micro pattern structure with high precision and high aspect ratio using powder injection molding (PIM) is developed. In the PIM process, the metal powder is mixed with the binder systems and the mixture is injected into the metal mold. The injection molded green parts are debinded and sintered to reach final shape and properties. In this method, the optimization of physical properties such as fluidity and strength of the binder system is essential for perfect filling the high aspect ratio micro-pattern. For this purpose, the correlation between the properties of the binder system and feedstock and ${\mu}-PIM$ process was investigated, and a binder system with low viscosity at low temperature(about $110^{\circ}C$) and high strength after cooling was investigated and applied. Employing this process, high precision parts with line type micro pattern structure which has pattern size $160{\mu}m$ and aspect ratio more than 2 can be manufactured.

Evaluation of micro-channel characteristics of fused silica glass using powder blasting (Powder blasting을 이용한 Fused silica glass의 마이크로 채널 가공 및 특성 평가에 관한 연구)

  • Lee, Jung-Won;Kim, Tae-Min;Shin, Bong-Cheol
    • Design & Manufacturing
    • /
    • v.14 no.1
    • /
    • pp.36-41
    • /
    • 2020
  • Recently, due to the development of MEMS technology, researches for the production of effective micro structures and shapes have been actively conducted. However, the process technology based on chemical etching has a number of problems such as environmental pollution and time problems due to multi-process. Various processes to cope with this process are being studied, and one of the mechanical etching processes is the powder blasting process. This process is a method of spraying fine particles, which has the advantage of being an effective process in manufacturing hard brittle materials. However, it is also a process that adversely affects the material surface roughness and material properties due to the impact of the injection of fine particles. In this study, after fabricating micro-channels in fused silica glass with excellent optical properties among the hard brittle materials, we used the nano indentation system to analyze the micro parts using nano-particles as well as machinability and surface roughness analysis of the processed surface. The analysis was performed for the effective processing of powder blasting.

Characteristics on the Surge Capability of Bi-based Varistor Fabricated with ZnO Nano-powder (ZnO 나노분말로 제조한 Bi계 바리스터의 써지내량 특성)

  • Wang, Min-Sung;Park, Choon-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.9
    • /
    • pp.862-867
    • /
    • 2006
  • Bi-based nano-varistors and micro-varistors fabricated with each ZnO nano-powder and micro-powder were studied about characteristics on the surge capability in this study. ZnO nano-varistors were sintered in air at $1050^{\circ}C$ for 2 hr. The voltage-current and residual voltage properties of ZnO nano-varistor were compared with their of ZnO micrio-varistor. As a result of these properties, our ZnO nano-varistor has about 3 times at operating voltage as compared with conventional ZnO varistor fabricated with micro-powder and the residual voltage was 8.06 kV at nominal discharge current 101kA in the lighting impulse current test. And then the residual voltage rate 1.72 of our nano-varistor has had better performance than the 1.79 of micro-varistor because ZnO nano-varistor has shown much quick response property because of increasing effective cross-section area. Also, to analysis surge capability took thermal images for pyrexia temperature distribution with each of the varistors after operating varistors. Nano-varistor doesn't have shown local overheating and can confirm accurate temperature grade on the surface of its.

Development of Feeding System by Micro Particle Powder (마이크로 미립 이송시스템 개발에 관한 연구)

  • 박정수
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.8 no.3
    • /
    • pp.105-110
    • /
    • 2003
  • The purpose of this paper is to development of micro particle powder feeding systems for the reduction of air leakage of the feeding system. Most of the powder-granule supply systems using compressed air supply have a large amount of air leakage interference. The results of this study lead to reduce air leakage rate by over 50% and to save production cos by. 60%.

  • PDF

Micro-Deburring of Electro-Parts by Powder Blasting (Powder Blasting을 이용한 전자부품의 미세버 제거)

  • 김광현;최영현;최종순;박동삼;유우식
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.314-318
    • /
    • 2002
  • Several types of burrs form on the edges of all machined and stamped parts. These burrs must be removed to prevent interference fits or short circuits, to improve fatigue life or to prevent injury. Despite the full or partial automation of FMC or FMS, deburring operations to obtain workpiece with fine surface quality are difficult to be automated since the occurrence and condition of burr are not constant. This study focused on developing micro-deburring technique for small electro- parts produced by press process. The successful performance was demonstrated by deburring experiment using the powder blasting.

  • PDF

Development of fundamental technologies on high precision mold for micro functional elements and parts (기능성 초정밀 핵심 요소부품 제조 초정밀 금형 기반기술 개발)

  • Je, T.J.;Lee, E.S.;Choi, D.S.;Kim, J.G.;Whang, K.H.;Yoon, J.S.;Chang, S.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.74-77
    • /
    • 2009
  • Demands for high quality and productivity of precision mechanical parts are increasing greatly nowadays due to the rapid growth of information technologies and convergence industries. Therefore, core technologies for fabrication of precision mechanical parts are the fundamental issues, which are the precision machining, micro powder injection molding technologies, MR polishing, micro polymer processes, micro actuation modules and so on. These technologies are directly related to the mass production of high functional devices and machineries. Therefore, this study investigates the fabrication technologies of micro precision molds for advanced devices for possible commercialization in a near future.

  • PDF

Fabrication and Characterization of Thermoelectric Thick Film by Using Bi-Te-Sb Powders

  • Yu, Ji-Hun;Bae, Seung-Chul;Ha, Gook-Hyun;Kim, Ook-Jung;Lee, Gil-Gun
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.430-431
    • /
    • 2006
  • Thermoelectric thick film was fabricated by screen printing process with using p-type Bi-Te-Sb powders. The powder was synthesized by melting, milling and sintering process and hydrogen reduced to enhance the thermoelectric property. The thick film of Bi-Te-Sb powder was fabricated by screen printing method and baked at the optimized conditions. The thermal conductivity, the electrical resistivity and Seeback coefficient of thick film were measured and the thermoelectric performance was analyzed in terms of film characteristics and its microstructure. Finally, the feasibility of thermoelectric thick film into micro cooling device on CPU chip was discussed in this study.

  • PDF