• Title/Summary/Keyword: micro-powder

Search Result 475, Processing Time 0.025 seconds

Study on Surface Modification of Ti Substrate to Improve the Dispersion of Catalytic Metals on Synthesis of Carbon Nanotubes (탄소나노튜브 합성 시 촉매 금속의 분산도 향상을 위한 Ti Substrate의 표면 개질 연구)

  • Kwak, Seoung Yeol;Kim, Ho Gyu;Byun, Jong Min;Park, Ju Hyuk;Suk, Myung-Jin;Oh, Sung-Tag;Kim, Young Do
    • Journal of Powder Materials
    • /
    • v.21 no.1
    • /
    • pp.28-33
    • /
    • 2014
  • This paper describes the surface modification effect of a Ti substrate for improved dispersibility of the catalytic metal. Etching of a pure titanium substrate was conducted in 50% $H_2SO_4$, $50^{\circ}C$ for 1 h-12 h to observe the surface roughness as a function of the etching time. At 1 h, the grain boundaries were obvious and the crystal grains were distinguishable. The grain surface showed micro-porosities owing to the formation of micro-pits less than $1{\mu}m$ in diameter. The depths of the grain boundary and micro-pits appear to increase with etching time. After synthesizing the catalytic metal and growing the carbon nano tube (CNT) on Ti substrate with varying surface roughness, the distribution trends of the catalytic metal and grown CNT on Ti substrate are discussed from a micro-structural perspective.

Fabrication of Organic-Inorganic Nanocomposite Blade for Dicing Semiconductor Wafer (반도체 웨이퍼 다이싱용 나노 복합재료 블레이드의 제작)

  • Jang, Kyung-Soon;Kim, Tae-Woo;Min, Kyung-Yeol;Lee, Jeong-Ick;Lee, Kee-Sung
    • Composites Research
    • /
    • v.20 no.5
    • /
    • pp.49-55
    • /
    • 2007
  • Nanocomposite blade for dicing semiconductor wafer is investigated for micro/nano-device and micro/nano-fabrication. While metal blade has been used for dicing of silicon wafer, polymer composite blades are used for machining of quartz wafer in semiconductor and cellular phone industry in these days. Organic-inorganic material selection is important to provide the blade with machinability, electrical conductivity, strength, ductility and wear resistance. Maintaining constant thickness with micro-dimension during shaping is one of the important technologies fer machining micro/nano fabrication. In this study the fabrication of blade by wet processing of mixing conducting nano ceramic powder, abrasive powder phenol resin and polyimide has been investigated using an experimental approach in which the thickness differential as the primary design criterion. The effect of drying conduction and post pressure are investigated. As a result wet processing techniques reveal that reliable results are achievable with improved dimension tolerance.

HVOF Spray Coating of Co-alloy(T800) for the Improvement of durability of High Speed Spindle (초고속 회전체의 내구성향상을 위한 Co-alloy(T800)의 초고속 용사코팅)

  • Cho, Tong-Yul;Yoon, Jae-Hong;Kim, Kil-Su;Youn, Suk-Jo;Back, Nam-Ki;Park, Byung-Chul;Chun, Hui-Gon
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.6
    • /
    • pp.32-37
    • /
    • 2006
  • Micron size Co-alloy(T800) powder was coated on Inconel 718 by HVOF thermal spraying for the studies of the improvement of durability of high speed spindle by using Taguchi program for the parameters of spray distance, flow rates of hydrogen and oxygen and powder feed rate. The optimal coating process was determined by the studies of coating properties such as micro-structure, porosity, surface roughness and micro hardness. Friction and wear behaviors of coatings were investigated by sliding wear test at room temperature and $1000^{\circ}F(538^{\circ}C)$. At both room temperature and $538^{\circ}C$ the sliding wear debris and friction coefficients of the coating were drastically reduced compared with the surface of non-coated parent material. This shows that Co-alloy powder coating is highly recommendable for the durability improvement surface coating of high speed air-bearing spindle. At high temperature wear traces and friction coefficients of both coating and non-coating were drastically reduced compared with those of room temperature since the brittle oxides were formed easily on the surface, and the brittle oxide phases were attrited by the reciprocating sliding wear according to the complicated mixed wear mechanisms These oxide particles, partially melts and the melts play role as lubricant and reduce the wear and friction coefficient. This also shows that Co-alloy powder coating is highly recommendable far the durability improvement surface coating on the surface vulnerable to frictional heat such as high speed spindles.

Comparison of mechanical and biological properties of zirconia and titanium alloy orthodontic micro-implants

  • Choi, Hae Won;Park, Young Seok;Chung, Shin Hye;Jung, Min Ho;Moon, Won;Rhee, Sang Hoon
    • The korean journal of orthodontics
    • /
    • v.47 no.4
    • /
    • pp.229-237
    • /
    • 2017
  • Objective: The aim of this study was to compare the initial stability as insertion and removal torque and the clinical applicability of novel orthodontic zirconia micro-implants made using a powder injection molding (PIM) technique with those parameters in conventional titanium micro-implants. Methods: Sixty zirconia and 60 titanium micro-implants of similar design (diameter, 1.6 mm; length, 8.0 mm) were inserted perpendicularly in solid polyurethane foam with varying densities of 20 pounds per cubic foot (pcf), 30 pcf, and 40 pcf. Primary stability was measured as maximum insertion torque (MIT) and maximum removal torque (MRT). To investigate clinical applicability, compressive and tensile forces were recorded at 0.01, 0.02, and 0.03 mm displacement of the implants at angles of $0^{\circ}$, $10^{\circ}$, $20^{\circ}$, $30^{\circ}$, and $40^{\circ}$. The biocompatibility of zirconia micro-implants was assessed via an experimental animal study. Results: There were no statistically significant differences between zirconia micro-implants and titanium alloy implants with regard to MIT, MRT, or the amount of movement in the angulated lateral displacement test. As angulation increased, the mean compressive and tensile forces required to displace both types of micro-implants increased substantially at all distances. The average bone-to-implant contact ratio of prototype zirconia micro-implants was $56.88{\pm}6.72%$. Conclusions: Zirconia micro-implants showed initial stability and clinical applicability for diverse orthodontic treatments comparable to that of titanium micro-implants under compressive and tensile forces.

Cutting Efficiency and Mechanical Characteristics of Diamond Micro-blades Containing WS2 Lubricant (WS2 윤활제를 첨가한 마이크로 다이아몬드 블레이드의 절삭성능과 기계적 특성)

  • Kim, Song-Hee;Jang, Jae-Cheol
    • Journal of Surface Science and Engineering
    • /
    • v.45 no.1
    • /
    • pp.37-42
    • /
    • 2012
  • $WS_2$ powder was added to the Cu/Sn bond metal of diamond micro-blades for machining of semi-conductor and IC chips to improve cutting efficiency. The effect of $WS_2$ additive on cutting efficiency was investigated and compared with the micro-blades with $MoS_2$ developed in previous research. Flexural strength, frictional coefficient, and wear resistance of blades decreased with $WS_2$ but wear depth increased. It was found that the blades including $WS_2$ consumed less momentary energy than the blades containing $MoS_2$ during dicing test. Micro-blades containing $WS_2$ exhibited lower flexural strength than the blades with $MoS_2$ resulting from higher amount of sintering defects relevant to the less effectiveness of $WS_2$ on fluidity. The effect of $WS_2$ and $MoS_2$ on fluidity during sintering was analyzed in terms of mismatching degree between the longitudinal direction of lubricant particles and the perpendicular direction to the compact loading. The blade with 8.1 vol.% of $WS_2$ showed the best cutting efficiency.

Preparation of Bi-materials by Powder Metallurgy Method (분말야금법을 이용한 Bi-materials의 제조)

  • Lee In-Gyu;Lee Kwang-Sik;Chang Si-Young
    • Journal of Powder Materials
    • /
    • v.11 no.6 s.47
    • /
    • pp.462-466
    • /
    • 2004
  • The bi-materials composed of $Al-5wt{\%}Mg$ and its composite reinforced with SiC particles were prepared by ball-milling and subsequent sintering process. The size of powder in Al-Mg/SiCp mixture decreased with increasing ball-milling time, it was saturated above 30 h when the ball and powder was in the ratio of 30 to 1. Both $Al-5wt{\%}Mg$ powders mixture and $Al-5wt{\%}Mg/SiCp$ mixture were compacted under a pressure of 350MPa and were bonded by sintering at temperatures ranging from 873K to 1173K for 1-5h. At 873k, the sound bi-mate-rials could not be obtained. In contrast, the bi-materials with the macroscopically well-bonded interface were obtained at higher temperatures than 873K. The length of well-bonded interface became longer with increasing temperature and time, indicating the improved contact in the interface between unreinforced Al-Mg part and Al-Mg/SiCp composite part. The relative density in the bi-materials increased as the sintering temperature and time increased, and the bi-materials sintered at 1173K for 5h showed the highest density.

Characteristics of High Density U-Mo Alloy Powder Prepared by Centrifugal Atomization

  • Kim, Ki-Hwan;Ahn, Hyeon-Seok;Lee, Don-Bae;Park, Hee-Dae;Kim, Chang-Kyu;Baek, Kyeong-Wook
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05c
    • /
    • pp.213-218
    • /
    • 1996
  • Characteristics of high density U-Mo alloy powder prepared by centrifugal atomization have been examined. The results indicate that the majority of the atomized U-Mo alloy particles has a smooth surface and frequently near-perfect spheroidal shape with few satellites attached. The size distribution of atomized U-Mo alloy powder shows the mono-modal size distribution seen in ligament disintegration mechanism. All phases of atomized alloy powder below 150$\mu\textrm{m}$ irrespectively to particle size are found to be ${\gamma}$-U (cubic structure) phases with isotropic structure and not to be U$_2$Mo phase at all. The microstructure of atomized U-Mo alloy particulates has micro-crystalline structure with non-dendritic gram supersaturated with Mo element. Also the grain size of ${\gamma}$ -U tends to decrease with the decrease of the powder diameter.

  • PDF

Preparation of Submicron YBaCuO Powder by Sol-gel Method

  • Fan, Zhanguo;Soh, Dea-Wha
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.557-560
    • /
    • 2003
  • The submicron $YBa_2Cu_3O_x$ powder was prepared by the sol-gel method. The particle size is distributed from 0.2 to $1.0\;{\mu}m$, which benefits to eliminate the micro-cracks formed in the $YBa_2Cu_3O_x$ films deposited by electrophoresis. The powder was single phase of $YBa_2Cu_3O_x$ examined by X-ray diffraction. In the sol-gel process the citrate gel was formed from citric acid and nitrate solution of $Y_2O_3$, $Ba(NO_3)O_2$ and CuO. When pH values were adjusted to $6.4{\sim}6.7,\;Ba(NO_3)O_2$ could be dissolved in the citrate solution completely. Appropriate evaporative temperature of the sol-gel formation is discussed. After the heat treatment the transition temperature($T_c$) and critical current density($J_c$) of the $YBa_2Cu_3O_x$ samples made of the submicron powder were measured.

  • PDF

Synthesis of TiB2 Dispersed Cu Matrix Composite Material by the Combination of the Mechanical Milling and Plasma Activated Sintering Process (기계적 밀링과 플라즈마 활성 소결법에 의한 TiB2 분산 Cu기 복합재료 제조)

  • Kim, Kyong-Ju;Lee, Gil-Geun;Park, Ik-Min
    • Journal of Powder Materials
    • /
    • v.14 no.5
    • /
    • pp.292-297
    • /
    • 2007
  • The present study was focused on the synthesis of a $TiB_2$ dispersed copper matrix composite material by the combination of the mechanical milling and plasma activated sintering processes. The $Cu/TiB_2$ mixed powder was prepared by the combination of the mechanical milling and reduction processes using the copper oxide and titanium diboride powder as the raw material. The synthesized $Cu/TiB_2$ mixed powder was sintered by the plasma activated sintering process. The hardness and electric conductivity of the sintered bodies were measured using micro vickers hardness and four probe method, respectively. The relative density of $Cu/TiB_2$ composite material sintered at $800^{\circ}C$ showed about 98% of theoretical density. The $Cu-1vol%TiB_2$ composite material has a hardness of about 130Hv and an electric conductivity of about 85% IACS. The hardness and electric conductivity of $Cu-3vol%TiB_2$ composite material were about 140 Hv and about 45% IACS, respectively.

Self-cleaning measurements on tiles manufactured with micro-sized photoactive TiO2

  • Bianchi, C.L.;Gatto, S.;Nucci, S.;Cerrato, G.;Capucci, V.
    • Advances in materials Research
    • /
    • v.2 no.1
    • /
    • pp.65-75
    • /
    • 2013
  • Heterogeneous photocatalysis is a rapidly developing field in environmental engineering. It has a great potential to cope with the increasing pollution in the air. The addition of a photocatalyst to ordinary building materials such as tiles, concrete, paints, creates environmental friendly materials by which air pollution or pollution of the surface itself can be controlled and diminished. This work reports the results of the laboratory research, especially carried out towards air purifying action and self-cleaning measurements. In particular the research was focused on the study of the photocatalytic behavior of industrially prepared tiles produced starting from commercial micro-sized $TiO_2$. Air purification action has been investigated through NOx degradation tests. On the contrary, the degradation of pollution at the surface, also called as self-cleaning action, is verified by the degradation of two different organic dyes: Rhodamine B (red color) and Metanil yellow (yellow).