• Title/Summary/Keyword: micro-focus X-ray CT

Search Result 9, Processing Time 0.024 seconds

Development of High Resolution Micro-CT System for In Vivo Small Animal Imaging (소형 동물의 생체 촬영을 위한 고해상도 Micro-CT 시스템의 개발)

  • Park, Jeong-Jin;Lee, Soo-Yeol;Cho, Min-Hyoung
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.1
    • /
    • pp.95-101
    • /
    • 2007
  • Recently, small-animal imaging technology has been rapidly developed for longitudinal screening of laboratory animals such as mice and rats. One of newly developed imaging modalities for small animals is an x-ray micro-CT (computed tomography). We have developed two types of x-ray micro-CT systems for small animal imaging. Both systems use flat-panel x-ray detectors and micro-focus x-ray sources to obtain high spatial resolution of $10{\mu}m$. In spite of the relatively large field-of-view (FOV) of flat-panel detectors, the spatial resolution in the whole-body imaging of rats should be sacrificed down to the order of $100{\mu}m$ due to the limited number of x-ray detector pixels. Though the spatial resolution of cone-beam CTs can be improved by moving an object toward an x-ray source, the FOV should be reduced and the object size is also limited. To overcome the limitation of the object size and resolution, we introduce zoom-in micro-tomography for high-resolution imaging of a local region-of-interest (ROI) inside a large object. For zoom-in imaging, we use two kinds of projection data in combination, one from a full FOV scan of the whole object and the other from a limited FOV scan of the ROI. Both of our micro-CT systems have zoom-in micro-tomography capability. One of both is a micro-CT system with a fixed gantry mounted with an x-ray source and a detector. An imaged object is laid on a rotating table between a source and a detector. The other micro-CT system has a rotating gantry with a fixed object table, which makes whole scans without rotating an object. In this paper, we report the results of in vivo small animal study using the developed micro-CTs.

Development of a Micro-CT System for Small Animal Imaging (소 동물 촬영을 위한 Micro-CT의 개발)

  • Sang Chul Lee;Ho Kyung Kim;In Kon Chun;Myung Hye Cho;Min Hyoung Cho;Soo Yeol Lee
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.2
    • /
    • pp.97-102
    • /
    • 2004
  • We developed an x-ray cone-beam micro computed tomography (micro-CT) system for small-animal imaging. The micro-CT system consists of a 2-D flat-panel x-ray detector with a field-of-view (FOV) of 120${\times}$120 mm2, a micro-focus x-ray source, a scan controller and a parallel image reconstruction system. Imaging performances of the micro-CT system have been evaluated in terms of contrast and spatial resolution. The minimum resolvable contrast has been found to be less than 36 CT numbers at the dose of 95 mGy and the spatial resolution about 14 lp/mm. As small animal imaging results, we present high resolution 3-D images of rat organs including a femur, a heart and vessels. We expected that the developed micro-CT system can be greatly used in biomedical studies using small animals.

Identification and Three-Dimensional Characterization of Micropore Networks Developed in Granite using Micro-Focus X-ray CT

  • Choo, Chang-Oh;Takahashi, Manabu;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.24 no.2
    • /
    • pp.179-189
    • /
    • 2014
  • We analyzed the three-dimensional distribution of micropores and internal structures in both fresh and weathered granite using micro-focus X-ray computed tomography (micro-CT). Results show that the pore radius in fresh granite is mostly in the range of $17-50{\mu}m$, the throat radius is in the range of $5-25{\mu}m$, and the coordination number (CN) of pores is less than 10. In contrast, the pore radius in weathered granite is mostly in the range of $20-80{\mu}m$, the throat radius is in the range of $8-30{\mu}m$, and the CN is less than 12. In general, a positive linear relationship exists between pore radius and CN. In addition, both the size and the density of pores increase with an increasing degree of rock weathering. The size of the throats that connect the pores also increases with an increasing degree of weathering, which induces fracture propagation in rocks. Micro-CT is a powerful and versatile approach for investigating the three-dimensional distributions of pores and fracture structures in rocks, and for quantitatively assessing the degree of pore connectivity.

Quantitative Analysis of Skarn Ore Using 3D Images of X-ray Computed Tomography (3차원 X-ray 단층 화상을 이용한 스카른 광석의 정량분석 연구)

  • Jeong, Mi-Hee;Cho, Sang-Ho;Jeong, Soo-Bok;Kim, Young-Hun;Park, Jai-Koo;Kaneko, Katsuhiko
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.211-217
    • /
    • 2010
  • A micro-focus X-ray computed tomography (CT) was employed to determine quantitative phase analysis of skarn Zn-Pb-Cu ore by nondestructive visualization of the internal mineral distribution of a skarn ore. The micro CT images of the ore were calibrated to remove beam hardening artifacts, and compared with its scanning electron microscope (SEM) images to set the threshold of CT number range covering sulfide ore minerals. The volume ratio of sulfide and gangue minerals was calculated 20.5% and 79.5%, respectively. The quantitative 3D X-ray CT could be applied to analyse the distribution of economic minerals and their recovery.

Analysis of Porosity and Distribution of Pores in Rocks by Micro Focus X-Ray CT (미소 초점 X선 CT를 이용한 암석 내 공극의 분포 및 공극률 분석)

  • Jeong, Gyo-Cheol;Takahashi, Manabu
    • The Journal of Engineering Geology
    • /
    • v.20 no.4
    • /
    • pp.461-465
    • /
    • 2010
  • Weathering and permeability in rocks play a very important role in underground disposal of radioactive waste and their long-term management as well as stability security of rock structures. Weathering and permeability of rocks are largely controlled by the characters of inner structures of rocks. In other words, weathering rate can be accelerated depending on the quantity of pore and microcrack in rocks. Quantitative evaluation of inner structures of rocks can serve as a tool that can assess the degree of weathering of rocks. Therefore it can be said that the understanding of three dimensional distribution of the inner structure of rocks is important for long-term management of rock structures. This study was performed to analyze three dimensional distribution of pore in rocks using Micro Focus X-ray CT on fresh granite and weathered granite from Korea. Results of the analysis clearly show distribution of pore and porosity of the inner rock.

Quantitative Evaluation of Concrete Damage by X-ray CT Methods (마이크로 포커스 X-ray CT를 이용한 콘크리트 손상균열의 정량적 평가)

  • Jung, Jahe
    • The Journal of Engineering Geology
    • /
    • v.28 no.3
    • /
    • pp.455-463
    • /
    • 2018
  • This study developed a method to quantitatively measure the size of cracks in concrete using X-ray CT images. We prepared samples with a diameter of 50 mm and a length of 100 mm by coring cracked concrete block that was obtained by chipping. We used a micro-focus X-ray CT, then applied the 3DMA method (3 Dimensional Medial axis Analysis) to the 3D CT images to find effective parameters for damage assessment. Finally, we quantitatively assessed the damage based on sample locations, using the damage assessment parameter. Results clearly show that the area near the chipping surface was damaged to a depth of 3 cm. Furthermore, X-ray methods can be used to evaluate the porosity index, burn number, and medial axis, which are used to estimate the damage to the area near the chipping surface.

Numerical analysis of fracture mechanisms for porous calcium phosphate (다공성 칼슘포스파이트에 대한 파괴분석)

  • Park, Jin-Hong;Bae, Ji-Yong;Shin, Jae-Bum;Jeon, In-Su
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1301-1302
    • /
    • 2008
  • In this study, the fracture strength for fracture mechanism porous calcium phosphate made from sintered with ${\beta}$-tricalcium phosphate obtained by wet precipitation procedure is analyzed using finite element method and experiment measurement. First, three $3{\times}3{\times}3mm^3$ and $5{\times}5{\times}5mm^3$ specimens are prepared and tomographic images of one $5{\times}5{\times}5mm^3$ specimen are obtained by micro focus X-ray CT. The compression tests using the specimens are carried out to measure the elastic modulus and fracture strength to analyze the fracture mechanism of porous calcium phosphate specimen. The tomographic images are reconstructed by 3D reconstruction program. The finite elements are directly built up in the reconstructed specimen. The numerical simulation for the compression tests is performed using the element. The mechanism of calcium phosphate of simulation are obtained by the compression tests using there cylindric specimen of height 19.5 mm and diameter 10 mm. From the results, the applicability of porous calcium phosphate is evaluated to care fracture and vacant bone of a patient as the reinforcement material.

  • PDF

Numerical Analysis on the compressive behavior of closed-cell Al foam (닫힌 셀 구조 Al 발포 재료의 압축 거동에 대한 수치해석)

  • Jeon, In-Su
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1663-1666
    • /
    • 2007
  • The finite element method is applied to analyze the deformation mechanisms in the closed-cell Al foam under the compression. The modeling of the real cellular structure proceeds with the concept of the reverse engineering. First of all, the small, $10{\times}\;10{\times}\;10mm^3$ sized specimens of the closed-cell Al foam are prepared. The micro focus X-ray CTsystem of SHIMADZU Corp. is used to scan the full structures of the specimens. The scanned structures are converted to the geometric surfaces and solids through the software for 3-D scan data processing, RapidFormTMof INUS Tech. Inc. Then the solid meshes are directly generated on the converted geometric solids for the finite element analysis. The large elastic-plastic deformation and 3-D contact problems for the Al cellular material are considered. The clear and successful analysis for the deformation mechanisms in the closed-cell Al foam is carried out through the comparison of the numerical results in this research with the referred experimental ones.

  • PDF

Experimental Study on Deformation and Failure Behavior of Limestones under Dynamic Loadings (동적하중 하에서 석회암의 변형 및 파괴거동에 관한 실험적 연구)

  • Kang, Myoung-Soo;Kang, Hyeong-Min;Kim, Seung-Kon;Cheon, Dae-Sung;Kaneko, Katsuhiko;Cho, Sang-Ho
    • Tunnel and Underground Space
    • /
    • v.22 no.5
    • /
    • pp.339-345
    • /
    • 2012
  • Information on the deformation behavior and fracture strength of rocks subjected to dynamic loadings is important to stability analyses of underground openings underground vibration due to rock blasts, earthquakes and rock bursts. In this study, Split Hopkinson Pressure Bar (SHPB) system was applied to estimate dynamic compressive and tensile fracture strengths of limestone and also examine deformation behavior of limestones under dynamic loadings. A micro-focus X-ray CT scanner was used to observe non-destructively inside the impacted limestone specimens. From the dynamic tests, it was revealed that the limestone have over 140MPa dynamic compressive strength and the strain-rate dependency of the strength. Dynamic Brazilian tensile strength of the limestone exceeds 21MPa and shows over 3 times static Brazilian tensile strength.