• Title/Summary/Keyword: micro-degree

Search Result 409, Processing Time 0.025 seconds

Study on the Piezoelectric Bender Actuator for Small Walking Robots

  • Park, Min Ho;Park, Jong Man;Song, Chi Hoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.4
    • /
    • pp.276-280
    • /
    • 2020
  • A linear piezoelectric actuator that utilizes the elliptical motion of the two tips of the actuator is proposed. This device is easy to fabricate owing to its simple structure, consisting of three piezo ceramic benders and is suitable for use in micro robotic applications. A π-shaped structure, which was composed of four piezo ceramic benders, was constructed. Two of the benders were positioned on the center of the actuator, and the joints were attached at the ends of the cantilever. The other two benders were positioned on the side of the actuator and were attached between the joint and the tips. The actuator structure was designed to obtain the first bending mode of the horizontal vibration and the vertical vibration at the same frequency, resulting in elliptical motions at the tips. When two sinusoidal wave voltages with a 90-degree phase difference were applied to the two pairs of the actuator benders, elliptical motions were obtained at the tips. The driving characteristics of the prototype actuator were then measured using a laser doppler vibrometer.

Study on Fracture Toughness and Heat Input in Weld HAZ of Cr-Mo Steel (I) (welding structure) (Cr-Mo강 용접열영향부의 파괴인성과 용접입열량에 관한 연구(I) (HAZ 고유조직을 중심으로))

  • 임재규;정세희
    • Journal of Welding and Joining
    • /
    • v.2 no.2
    • /
    • pp.54-61
    • /
    • 1984
  • Construction of welding structure is greatly dependent upon welding heat cycle. Fracture toughness is decreased remarkablely due to coarse grained HAZ and inequal residual stress of three dimensions to originate in welding. Post weld heat treatment(PWHT) is carried out to increase the fracture toughness of HAZ and to remove the residual stress. There occur some problem such as toughness decrement and stress relief cracking(SRC) in the coarse grained HAZ subject to the effect of tempering treatment. Therefore, in this paper, the effect of heat inputs affecting cooling rate and PWHT under the no stress on fracture toughness were evaluated by crack opening displacement (COD), SEM and micro-hardness test. Experimental results are as follows; 1. Fracture toughness of weld HAZ is dependent upon weld heat cycle and it is decreased with increment of heat input, but the degree of improvement of fracture toughness after PWHT was linearly increased with heat input. 2. Hardness of the parent metal is not changed, but the softening of coarse grained HAZ is remarkable due to PWHT. 3. Fracture surface of as-weld show the perfect brittle fracture with the cleavage fracture, but after PWHT they appear the ductile fracture surface with dimple.

  • PDF

The Effects of the Annealing Heat Treatments on the Mechanical Properties of the Invar Materials (인바재료의 기계적 성질에 미치는 풀림 열처리의 영향)

  • Won, Si-Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.1
    • /
    • pp.129-138
    • /
    • 2001
  • This study examined the effects of the annealing heat treatments on the mechanical properties of the Invar(Fe-36%Ni Alloy) materials. Invar materials were annealed at various temperatures range 900~120$0^{\circ}C$ in vacuum(10-4Torr) and hydrogen atmospheres. And annealing conditions were changed by cooling rate and holding time at 110$0^{\circ}C$. The grain size of rolled Invar materials was very fine but those of annealed Invar materials at 900~120$0^{\circ}C$ in vacuum and hydrogen atmosphere increased with increasing annealing temperature. The micro-vickers hardness values of annealed Invar materials were decreased about 15% that of the rolled Invar materials, regardless of the various of annealing temperatures, atmosphere(vacuum, hydrogen) and annealing conditions. The tensile strength and yield strength of annealed Invar materials at 900~120$0^{\circ}C$ in vacuum and hydrogen atmosphere were decreased 10.0~14.4% and 34.6~39.1% those of the rolled Invar materials, respectively. The strength ratio(tensile strength/ yield strength) of annealed Invar materials was improved to 1.7~1.8 from the value of 1.2~1.3 of rolled Invar materials. The degree of spring back of annealed Invar materials was about 50% of the rolled Invar materials, regardless of the various of annealing temperatures, atmosphere(vacuum, hydrogen) and annealing conditions.

  • PDF

Evaluation Factors Influencing Construction Price Index in Fuzzy Uncertainty Environment

  • NGUYEN, Phong Thanh;HUYNH, Vy Dang Bich;NGUYEN, Quyen Le Hoang Thuy To
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.2
    • /
    • pp.195-200
    • /
    • 2021
  • In recent years, Vietnam's economic growth rate has been attributed to the growth of many well-managed industries within Southeast Asia. Among them is the civil construction industry. Construction projects typically take a long time to complete and require a huge budget. Many socio-economic variables and factors affect total construction project costs due to market fluctuations. In recent years, crucial socioeconomic development indicators of construction reached a fairly high growth rate. Also, most infrastructure and construction projects have a high degree of complexity and uncertainty. This makes it challenging to predict the accurate project price. These challenges raise the need to recognize significant factors that influence the construction price index of civil buildings in Vietnam, both micro and macro. Therefore, this paper presents critical factors that affect the construction price index using the fuzzy extent analysis process in an uncertain environment. This proposed quantitative model is expected to reflect the uncertainty in the process of evaluating and ranking the influencing factors of the construction price index in Vietnam. The research results would also allow project stakeholders to be more informed of the factors affecting the construction price index in the context of Vietnam's civil construction industry. They also enable construction contractors to estimate project costs and bid rates better, enhancing their project and risk management performance.

Selection of Main Factors by Experimental Analysis for Profile Blast Machining Based on Microparticle Blasting Equipment with a Two-Axis Sequence Control Stage (2축 시퀀스 제어 스테이지와 미세입자 분사장치에 의한 형상 분사가공시 실험계획법에 의한 주요인자 검출)

  • Hwang, Chul-Woong;Lee, Sea-Han;Wang, Duck Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.11
    • /
    • pp.64-69
    • /
    • 2020
  • To determine the effective factors for microparticle blasting with precise sequence position control in the x-axis and y-axis directions, we conducted a statistical experimental analysis of blasted square shapes by considering five condition factors. The control input and output were operated simultaneously by rotation-linear motion conversion and fine particles were blasted onto the aluminum specimen by precise position control driving using multiple execution codes. The micro-driving device used for processing was capable of microparticle blasting and of controlling the system through contact with a limit sensor at high speed and a two-degree-of-freedom driving mechanism. Our experiments were conducted on 1,050 specimens of pure aluminum (containing <1% of other elements). The effects of several factors (e.g., particle and nozzle diameters, blasting pressure, and federate and blasting cycle numbers) on the surface roughness and blasted surface's depth were verified through a statistical experimental analysis by applying the dispersion analysis method. This statistical analysis revealed that the nozzle diameter, the blasting pressure, and the blasting cycle number were the dominant factors.

Investigation of Liquid Droplet Impingement Erosion Corrosion based on the Flow Rate of Anodized 5083-H321 Al Alloy in Seawater (경질양극산화된 5083-H321 알루미늄 합금의 해수 내 액적충격침식부식 손상 연구)

  • Shin, Dong-Ho;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.310-317
    • /
    • 2020
  • This study investigated the damage to the specimen due to liquid droplet impingement erosion corrosion, which improved the corrosion resistance and durability via hard anodization of 5083-H321 aluminum alloy, which is widely used for small ships and marine structures. The experiment combined liquid droplet impingement erosion and electrochemical equipment with the flow rates in natural seawater solution. Subsequently, Tafel extrapolation of polarization curves was performed to evaluate damage due to the liquid droplet impingement erosion corrosion. The damaged surface was observed using a 3D microscope and a scanning electron microscope. The degree of pitting damage was measured using the Image J program, and the surface hardness was measured using the micro-Vickers hardness tester. The corrosion current density, area, depth, and ratio of the damaged areas increased with the increase in flow rate. The grain size of the damaged area at a flow rate of 20 m s-1 showed fewer and minor differences in height, and a smooth curved shape. The hardness of the damaged surface tended to decrease with increase in flow rate.

Establishment and Application of a Femtosecond-laser Two-photon-polymerization Additive-manufacturing System

  • Li, Shanggeng;Zhang, Shuai;Xie, Mengmeng;Li, Jing;Li, Ning;Yin, Qiang;He, Zhibing;Zhang, Lin
    • Current Optics and Photonics
    • /
    • v.6 no.4
    • /
    • pp.381-391
    • /
    • 2022
  • Two-photon-polymerization additive-manufacturing systems feature high resolution and precision. However, there are few reports on specific methods and possible problems concerning the use of small lasers to independently build such platforms. In this paper, a femtosecond-laser two-photon-polymerization additive-manufacturing system containing an optical unit, control unit, monitoring unit, and testing unit is built using a miniature femtosecond laser, with a detailed building process and corresponding control software that is developed independently. This system has integrated functions of light-spot detection, interface searching, micro-/nanomanufacturing, and performance testing. In addition, possible problems in the processes of platform establishment, resin preparation, and actual polymerization for two-photon-polymerization additive manufacturing are explained specifically, and the causes of these problems analyzed. Moreover, the impacts of different power levels and scanning speeds on the degree of polymerization are compared, and the influence of the magnification of the object lens on the linewidth is analyzed in detail. A qualitative analysis model is established, and the concepts of the threshold broadening and focus narrowing effects are proposed, with their influences and cooperative relation discussed. Besides, a linear structure with micrometer accuracy is manufactured at the millimeter scale.

Determinants of the Extent of Individual Credit Rationing: A Case Study of Can Tho Military Commercial Joint Stock Bank, Vietnam

  • DANG, Quang Vang;TRAN, Viet Thanh Truc;VUONG, Quoc Duy
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.7
    • /
    • pp.81-91
    • /
    • 2022
  • The aim of this paper was to analyze the determinants of the extent of individual credit rationing at Can Tho Military Commercial Joint Stock Bank (MB). The data was collected from 150 customers according to the systematic random sampling method listed in the bank. This study employed quantitative analysis methods, and Tobit regression model, to test the proposed hypotheses. The results showed that the average loan amount of an individual customer was 1,181.3 million VND, the average credit limit was 48.6%, and the average interest rate was 10.9% per year. Most of the individual customers borrowed money to buy properties. In addition, the analysis results also indicated that individual borrowers still faced some difficulties in accessing bank credit, such as cumbersome procedures, long waiting times, insufficient collateral assets, and loan documents. The results of the Tobit model pointed out that there were five factors affecting the degree of credit rationing to individual customers at the bank, including (1) Collateral, (2) Income, (3) Credit history, (4) Loan purpose, (5) Relationship between borrower and bank. Based on the empirical findings, the possible solutions for the bank and individual borrowers to improve credit efficiency for individual customers at commercial banks are obtained.

GNSS/Multiple IMUs Based Navigation Strategy Using the Mahalanobis Distance in Partially GNSS-denied Environments (GNSS 부분 음영 지역에서 마할라노비스 거리를 이용한 GNSS/다중 IMU 센서 기반 측위 알고리즘)

  • Kim, Jiyeon;Song, Moogeun;Kim, Jaehoon;Lee, Dongik
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.4
    • /
    • pp.239-247
    • /
    • 2022
  • The existing studies on the localization in the GNSS (Global Navigation Satellite System) denied environment usually exploit low-cost MEMS IMU (Micro Electro Mechanical Systems Inertial Measurement Unit) sensors to replace the GNSS signals. However, the navigation system still requires GNSS signals for the normal environment. This paper presents an integrated GNSS/INS (Inertial Navigation System) navigation system which combines GNSS and multiple IMU sensors using extended Kalman filter in partially GNSS-denied environments. The position and velocity of the INS and GNSS are used as the inputs to the integrated navigation system. The Mahalanobis distance is used for novelty detection to detect the outlier of GNSS measurements. When the abnormality is detected in GNSS signals, GNSS data is excluded from the fusion process. The performance of the proposed method is evaluated using MATLAB/Simulink. The simulation results show that the proposed algorithm can achieve a higher degree of positioning accuracy in the partially GNSS-denied environment.

Geometric error assessment system for linear guideway using laser-photodiodes (레이저-수광소자를 이용한 선형 이송측의 기하학적 오차측정 시스템)

  • Pahk, H.J.;Chu, C.N.;Hwang, S.W.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.5
    • /
    • pp.180-188
    • /
    • 1994
  • Error assessment and evaluation for machine for machine tool slides have been considered as essential tools for improving accuracy. In this paper, a computer aided measurement technique is proposed using photo pin diodes of quadrant type and laser source. In thedeveloped system, three photo diodes are mounted on a sensor mounting table, and the sensored signal is processed by specially designed signal conditioner to give fine resolution with minimum noise. A micro computer inputs the processed signal, and the geometric errors of five degree of freedoms are successfully evaluated. Pitch, roll, yaw, vertical and horizontal straightness errors are thus assessed simultaneously for a machine tool slide. Calibration techniques such as optics calibration, photo diode calibration are proposed and implemented, giving precise calibration for the measurement system. The developed system has been applied to a practical machine tool slide, and has been found as one of efficient and precise technique for machine tool slide.

  • PDF