• 제목/요약/키워드: micro-component

검색결과 395건 처리시간 0.028초

알루미늄 박판 미세 V-notching 가공부위의 성형 Parameter 관한 연구 (Study on Design Parameter of Aluminum Micro V-notched Component with Thin Sheet Metal)

  • 김상목;박중원;이현민;구태완;김정;강범수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.249-252
    • /
    • 2008
  • Micro V-notching process has been used to manufacturing the safety component in Li-Ion battery. These kinds of safety component in Li-Ion battery plays an important role in the explosion from excessive overheating. Therefore, it is very crucial to estimate accurately the working pressure range of the safety component with micro V-notch. In this study, the relationship with the working internal pressure in Li-Ion battery and fracture phenomenon in micro V-notch was investigated through the numerical analysis. The numerical analysis is especially adopted the finite element method with ductile fracture criteria.

  • PDF

상용 마이크로 가스터빈의 구성부 성능분석 (Evaluation of Component Performance of a Commercial Micro Gas Turbine)

  • 이종준;윤재은;김동섭
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.331-337
    • /
    • 2005
  • This study aims at evaluation of component performance of a commercial micro gas turbine by detailed measurements of various system parameters. A test facility to measure performance of a micro gas turbine was set up. Performance parameters such as turbine exit temperature, exhaust gas temperature, engine inlet temperature, compressor discharge pressure and fuel flow rate were measured. Variations in measured data and estimated performance parameters were analyzed. In addition to overall engine performance, component characteristic parameters including the turbine inlet temperature, the compressor efficiency, the turbine efficiency, the recuperator effectiveness were estimated. Behaviors of the estimated characteristic parameters with operating condition change were examined.

  • PDF

주성분분석과 신경회로망의 융합을 통한 실리콘 웨이퍼의 마이크로 크랙 분류에 관한 연구 (A Study on Classification of Micro-Cracks in Silicon Wafer Through the Fusion of Principal Component Analysis and Neural Network)

  • 서형준;김경범
    • 한국정밀공학회지
    • /
    • 제32권5호
    • /
    • pp.463-470
    • /
    • 2015
  • Solar cell is typical representative of renewable green energy. Silicon wafer contributes about 66 percent to its cost structure. In its manufacturing, micro-cracks are often occurred due to manufacturing process such as wire sawing, grinding and cleaning. Their detection and classification are important to process feedback information. In this paper, a classification method of micro-cracks is proposed, based on the fusion of principal component analysis(PCA) and neural network. The proposed method shows that it gives higher results than single application of two methods, in terms of shape and size classification of micro-cracks.

초정밀 가공기용 마이크로 스테이지의 힌지 형상과 재질 변화에 따른 안정성 해석 (Stability Analysis of a Micro Stage for Micro Cutting Machine with Various Hinge Type and Material Transformation)

  • 김재열;곽이구;유신
    • 한국정밀공학회지
    • /
    • 제20권7호
    • /
    • pp.233-240
    • /
    • 2003
  • Recently, the world are preparing for new revolution, called as If (Information Technology), NT (Nano-Technology), and BT (Bio-Technology). NT can be applied to various fields such as semiconductor-micro technology. Ultra precision processing is required for NT in the field of mechanical engineering. Recently, together with radical advancement of electronic and photonics industry, necessity of ultra precision processing is on the increase for the manufacture of various kernel parts. Therefore, in this paper, stability of ultra precision cutting unit is investigated, this unit is the kernel unit in ultra precision processing machine. According to alteration of shape and material about hinge, stability investigation is performed. In this paper, hinge shapes of micro stage in UPCU(Ultra Precision Cutting Unit) are designed as two types, where, hinge shapes are composed of round and rectangularity. Elasticity and strength are analyzed about micro stage, according to hinge shapes, by FE analysis. Micro stage in ultra precision processing machine has to keep hinge shape under cutting condition with 3-component force (cutting component, axial component, radial component) and to reduce modification against cutting force. Then we investigated its elasticity and its strength against these conditions. Material of micro stage is generally used to duralumin with small thermal deformation. But, stability of micro stage is investigated, according to elasticity and strength due to various materials, by FE analysis. Where, Used materials are composed of aluminum of low strength and cooper of medium strength and spring steel of high strength. Through this stability investigation, trial and error is reduced in design and manufacture, at the same time, we are accumulated foundation data for unit control.

MOD법으로 제조된 Copper Manganite 박막의 구조 및 NTCR 특성 (Micro-structure and NTCR Characteristics of Copper Manganite Thin Films Fabricated by MOD Process)

  • 이귀웅;전창준;정영훈;윤지선;남중희;조정호;백종후;윤종원
    • 한국전기전자재료학회논문지
    • /
    • 제27권7호
    • /
    • pp.452-457
    • /
    • 2014
  • Copper manganite thin films were fabricated on $SiN_x/Si$ substrate by metal organic decomposition (MOD) process. They were burned-out at $400^{\circ}C$ and annealed at various temperatures ($400{\sim}800^{\circ}C$) for 1h in ambient atmosphere. Their micro-structure and negative temperature coefficient of resistance (NTCR) characteristics were analyzed for micro-bolometer application. The copper manganite film with a cubic spinel structure was well developed at $500^{\circ}C$ which confirmed by XRD and HRTEM analysis. It showed a low resistivity ($47.5{\Omega}{\cdot}cm$) at room temperature and high NTCR characteristics of $-4.12%/^{\circ}C$ and $-2.15%/^{\circ}C$ at room temperature and $85^{\circ}C$, implying a good thin film for micro-bolometer application. Furthermore, its crystallinity was enhanced with increasing temperature to $600^{\circ}C$. However, the appearance of secondary phase at temperatures higher than $600^{\circ}C$ lead to deteriorate the NTCR characteristics.

혈액분석기용 유체소자의 설계기술 개발 (Micro Fluidic Component for a Blood Analysis System)

  • 김재윤;김덕종;허필우;박상진;윤의수
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2004년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.754-760
    • /
    • 2004
  • The miniaturization and integration are trend of modern blood analyses. Micro-Bio-Fluidics plays an important role in a micro blood analysis system. In this paper, analysis and design technology for blood analysis system is presented. Numerical simulations of a blood flow in micro separator and reservoir are conducted. As a result, we suggest on-chip micro separator, which performed plasma separation from whole blood in micro channels.

  • PDF

마이크로 병렬기구 플랫폼의 기구학적 보정 (Kinematic calibration for parallel micro machine platform)

  • 강득수;김종원
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.969-972
    • /
    • 2004
  • This paper describes the mechanism of parallel micro machine platform and its feedback control system for acquiring high accuracy. The parallel micro machine platform that has developed has 5x5x5 work-space and sub-micron accuracy. For the high accuracy, the feedback control system is important but errors in machining and assembling are inevitable. Kinematic calibration is important for this reason. In this paper, various error components are introduced and the effects of error component are analyzed.

  • PDF

기계적 스트레스에 의한 태양전지모듈의 전기적 특성변화 (The Variation of Electrical Characteristics of PV Module due to Mechanical Stress)

  • 공지현;지양근;강기환;김경수;유권종;안형근;한득영
    • 신재생에너지
    • /
    • 제6권1호
    • /
    • pp.38-45
    • /
    • 2010
  • Abstract Under the physical stress on photovoltaic (PV) module, it will be warped according to elongation of the front glass and then micro-crack will be occurred in the thermally sealed solar cell. This micro-crack leads to drop of short circuit current of the PV module. This is because of increase of resistance component by micro-crack. Micro-crack at specific solar cell in the module lessens the durability of PV module with reduced output, hot-spot caused by solar cell output mismatch and increased resistance component. This study shows the relation between electrical characteristics and micro- cracks due to mechanical stress on PV module.

원심력기반 3차원 관성밸브 모델링을 통한 정밀 미세유체제어 (3D-inertia Valve Component for Centrifugal Force-based Micro Fluid Control)

  • 강동희;김나경;강현욱
    • 한국가시화정보학회지
    • /
    • 제19권1호
    • /
    • pp.12-17
    • /
    • 2021
  • A three-dimensional slope valve component is used for controlling micro volume of liquid on a centrifugal force-based microfluidic disk platform, also called a lab-on-a-disk. The modeling factor of the slope valve component is determined to centrifugal force for liquid passing the crest of a slope valve via variation of slope length and angle as well as the radius to start point of slope valve. The centrifugal force is calculated by the equilibrium equation of the capillary and gravitational forces according to the microchannel surface roughness and the liquid volume, respectively. As a result, the slope valve is analyzed by the minimum angular velocity for liquid passing at crest point and the ratio between the length of micro liquid and slope length to obtain the factors for optimal slope angle modeling.

기계적 하중에 따른 스트레스로 인한 PV 모듈의 전기적 특성 (The Electrical Characteristics of PV Module by the Stress in accordance with Mechanical Weight Load)

  • 공지현;지양근;강기환;유권종;안형근;한득영
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 추계학술발표대회 논문집
    • /
    • pp.104-109
    • /
    • 2009
  • If the Photovoltaic(PV) Module should get physical load, the PV module will be warped according to elongation of the front glass and then micro-crack will be occurred in the heat sealed Solar Cell. This micro-crack drops output of the short circuit current and the open circuit voltage of the PV Module. This is because of increase of resistance component by micro-crack. Micro-crack at specific Solar Cell in the module reduces the durability of PV Module such as less output, Hot-Spot in the PV module caused by Solar Cell output mismatch, heat generating as resistance component caused by micro-crack. In this study, among some factors which effect to the output of crystalline PV Module, we will see how the micro-crack caused by mechanical stress effects to the electrical output of PV Module.

  • PDF