• Title/Summary/Keyword: micro-component

Search Result 395, Processing Time 0.027 seconds

Compositional and Microstructural Study of Punchong from Hakbongni, Kongju (공주 학봉리 분청에 대한 성분과 미세구조의 분석)

  • Lee, Young Eun;Koh, Kyongshin
    • Journal of Conservation Science
    • /
    • v.6 no.1 s.7
    • /
    • pp.3-14
    • /
    • 1997
  • Twelve Punchong sherds collected in Hakbongni, Kongju where the well known iron-painted on white slip were manufactured from late 15C to early 16C were analyzed for their composition and microstructure. The composition of the body was analyzed by X-ray fluorescence and that of glaze by electron probe micro-analyzer. Microstructure was observed by optical microscope, polarizing microscope, EPMA, and X-ray diffractometer. The results of composition of body and glaze of Hakbongni were compared with those of Punchong from Yongsuri, Boryong which was close to Hakbongni. The composition of body and glaze of these two areas were compared by principal component analysis using SPSS program. Hakbongni bodies have higher silica and flux materials but lower alumina and their glaze have higher silica, soda, iron oxide but lower alumina, calcia. Hakbongni punchong itself is divided into two groups. Their glaze is lime type. There are many remnant minerals, such as quartz, large feldspar mass with partially melted surrounding area, albite, biotite, and iron-oxide. From such a microstructure we can assume that preparation of raw material was rather crude and firing temperature quite low. Iron-painted material is identified as Mg/Fe/Al spinel by composition analysis and XRD pattern.

  • PDF

Antimicrobial and cytotoxic activity of Ferula gummosa plant essential oil compared to NaOCl and CHX: a preliminary in vitro study

  • Abbaszadegan, Abbas;Gholami, Ahmad;Mirhadi, Hosein;Saliminasab, Mina;Kazemi, Aboozar;Moein, Mahmood Reza
    • Restorative Dentistry and Endodontics
    • /
    • v.40 no.1
    • /
    • pp.50-57
    • /
    • 2015
  • Objectives: The usage of medicinal plants as natural antimicrobial agents has grown in many fields including dental medicine. The aim of this in vitro study was three-fold: (i) to determine the chemical compositions of the Ferula gummosa essential oil (FGEO), (ii) to compare the antimicrobial efficacy of the oil with sodium hypochlorite (NaOCl) and chlorhexidine (CHX), (iii) to assess the toxic behavior of FGEO in different concentrations compared to 5% NaOCl and 0.2% CHX. Materials and Methods: Gas chromatography/mass spectrometry (GC/MS) was used to determine the chemical compositions of the oil. The disk diffusion method and a broth micro-dilution susceptibility assay were exploited to assess the antimicrobial efficacy against Enterococcus faecalis, Staphylococcus aureus, Streptococcus mitis, and Candida albicans. The cytocompatibility of the FGEO was assessed on L929 fibroblasts, and compared to that of NaOCl and CHX. Results: Twenty-seven constituents were recognized in FGEO. The major component of the oil was ${\beta}$-pinene (51.83%). All three irrigants significantly inhibited the growth of all examined microorganisms compared to the negative control group. FGEO at $50{\mu}g/mL$ was effective in lower concentration against Enterococcus faecalis than 5% NaOCl and 0.2% CHX, and was also more potent than 0.2% CHX against Candida albicans and Staphylococcus aureus. FGEO was a cytocompatible solution, and had significantly lower toxicity compared to 5% NaOCl and 0.2% CHX. Conclusions: FGEO showed a promising biological potency as a root canal disinfectant. More investigations are required on the effectiveness of this oil on intracanal bacterial biofilms.

Development of Data Profiling Software Supporting a Microservice Architecture (마이크로 서비스 아키텍처를 지원하는 데이터 프로파일링 소프트웨어의 개발)

  • Chang, Jae-Young;Kim, Jihoon;Jee, Seowoo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.5
    • /
    • pp.127-134
    • /
    • 2021
  • Recently, acquisition of high quality data has become an important issue as the expansion of the big data industry. In order to acquiring high quality data, accurate evaluation of data quality should be preceded first. The quality of data can be evaluated through meta-information such as statistics on data, and the task to extract such meta-information is called data profiling. Until now, data profiling software has typically been provided as a component or an additional service of traditional data quality or visualization tools. Hence, it was not suitable for utilizing directly in various environments. To address this problem, this paper presents the development result of data profiling software based on a microservice architecture that can be serviced in various environments. The presented data profiler provides an easy-to-use interface that requests of meta-information can be serviced through the restful API. Also, a proposed data profiler is independent of a specific environment, thus can be integrated efficiently with the various big data platforms or data analysis tools.

Comparison of Lipid Profiles in Head and Brain Samples of Drosophila Melanogaster Using Electrospray Ionization Mass Spectrometry (ESI-MS)

  • Jang, Hyun Jun;Park, Jeong Hyang;Lee, Ga Seul;Lee, Sung Bae;Moon, Jeong Hee;Choi, Joon Sig;Lee, Tae Geol;Yoon, Sohee
    • Mass Spectrometry Letters
    • /
    • v.10 no.1
    • /
    • pp.11-17
    • /
    • 2019
  • Drosophila melanogaster (fruits fly) is a representative model system widely used in biological studies because its brain function and basic cellular processes are similar to human beings. The whole head of the fly is often used to obtain the key function in brain-related diseases like degenerative brain diseases; however the biomolecular distribution of the head may be slightly different from that of a brain. Herein, lipid profiles of the head and dissected brain samples of Drosophila were studied using electrospray ionization-mass spectrometry (ESI-MS). According to the sample types, the detection of phospholipid ions was suppressed by triacylglycerol (TAG), or the specific phospholipid signals that are absent in the mass spectrum were measured. The lipid distribution was found to be different in the wild-type and the microRNA-14 deficiency model ($miR-14{\Delta}^1$) with abnormal lipid metabolism. A few phospholipids were also profiled by comparison of the head and the brain in two fly model systems. The mass spectra showed that the phospholipid distributions in the $miR-14{\Delta}^1$ model and the wild-type were different, and principal component analysis revealed a correlation between some phospholipids (phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidylserine (PS)) in $miR-14{\Delta}^1$. The overall results suggested that brain-related lipids should be profiled using fly samples after dissection for more accurate analysis.

Effect of Tension-Test Temperature on Fracture Behavior and Mechanical Properties in STS/Al/Cu Clad Materials (STS/Al/Cu 클래드재의 파괴거동 및 기계적 물성에 미치는 인장시험 온도의 영향)

  • Bae, Dong-Hyun;Choi, Young-Jun;Chung, Won-Sub;Bae, Dong-Su;Cho, Young-Rae
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.12
    • /
    • pp.811-818
    • /
    • 2009
  • In order to meet increasingly complex and rigorous technical specifications, extensive effort has been devoted to fabricate clad materials with multi-layered metal plates. In this study, novel stainless steel/aluminum/copper (STS/Al/Cu) three-ply clad materials were fabricated by a hot rolling process for cookware applications. The effect of the testing temperature on the mechanical properties of the clad materials and on each component metal was investigated during the tensile tests. The interface properties of the clad materials were also examined by optical microscopy (OM) and an electron probe micro-analyzer (EPMA). The best mechanical and interfacial properties for a warm working process were found in a sample annealed at a temperature of $300^{\circ}C$. For the sample annealed at $400^{\circ}C$, the results of the tensile test indicated that interface delamination occurred only in the region of the Al/Cu interfaces. This was due to the formation of the thick and brittle intermetallic compound of $Al_2Cu$ in the Al/Cu interface. In contrast, no interface delamination was observed in the STS/Al interface, most likely due to its strong bond strength.

A study on the manufacturing of metal/plastic multi-components using the DSI molding (DSI 성형을 이용한 금속/플라스틱 복합 부품 제조에 관한 연구)

  • Ha, Seok-Jae;Cha, Baeg-Soon;Ko, Young-Bae
    • Design & Manufacturing
    • /
    • v.14 no.4
    • /
    • pp.71-77
    • /
    • 2020
  • Various manufacturing technologies, including over-molding and insert-injection molding, are used to produce hybrid plastics and metals. However, there are disadvantages to these technologies, as they require several steps in manufacturing and are limited to what can be reasonably achieved within the complexities of part geometry. This study aims to determine a practical approach for producing metal/plastic hybrid components by combining plastic injection molding and metal die casting to create a new hybrid metal/plastic molding process. The integrated metal/plastic hybrid injection molding process developed in this study uses the proven method of multi-component technology as a basis to combine plastic injection molding with metal die casting into one integrated process. In this study, the electrical conductivity and ampacity were verified to qualify the new process for the production of parts used in electronic devices. The electrical conductivity was measured, contacting both sides of the test sample with constant pressure, and the resistivity was measured using a micro ohmmeter. Also, the specific conductivity was subsequently calculated from the resistivity and contact surface of the conductor path. The ampacity defines the maximum amount of current a conductive path can carry before sustaining immediate or progressive deterioration. The manufactured hybrid multi-components were loaded with increasing currents, while the temperature was recorded with an infrared camera. To compare the measured infrared images, an electro-thermal simulation was conducted using commercial CAE software to predict the maximum temperature of the power loaded parts. Overall, during the injection molding process, it was demonstrated that multifunctional parts can be produced for electric and electronic applications.

Surface Modification of Screen-Mesh Wicks to Improve Capillary Performance for Heat Pipes (히트파이프 모세관 성능 개선을 위한 스크린-메쉬 윅의 표면 개질)

  • Jeong, Jiyun;Lim, Hyewon;Kim, Hyewon;Lee, Sangmin;Kim, Hyungmo
    • Tribology and Lubricants
    • /
    • v.38 no.5
    • /
    • pp.185-190
    • /
    • 2022
  • Among the operating limits of a heat pipe, the capillary limit is significantly affected by the characteristics of the wick, which is determined by the capillary performance. The major parameters for determining capillary performance are the maximum capillary pressure and the spreading characteristics that can be expected through the wick. A well-designed wick structure improves capillary performance and helps improve the stability of the heat pipe by enhancing the capillary limit. The capillary performance can be improved by forming a porous microstructure on the surface of the wick structure through surface modification techniques. In this study, a microstructure is formed on the surface of the wick by using a surface modification method (i.e., an electrochemical etching process). In the experiment, specimens are prepared using stainless-steel screen mesh wicks with various fabrication conditions. In addition, the spreading and capillary rise performances are observed with low-surface-tension fluid to quantify the capillary performance. In the experiments, the capillary performance, such as spreading characteristics, maximum capillary pressure, and capillary rise rate, improves in the specimens with microstructures formed through surface modification compared with the specimens without microstructures on the surface. The improved capillary performance can have a positive effect on the capillary limit of the heat pipe. It is believed that the surface microstructures can enhance the operational stability of heat pipes.

Surimi for snacks: physicochemical and sensory properties of fried fish snacks prepared from surimi of different fish species

  • Yunjin Choi;Jiyeon Chae;Seonghui Kim;Eui-Cheol Shin;Gibeom Choi;Duhyeon Kim;Suengmok Cho
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.2
    • /
    • pp.145-157
    • /
    • 2023
  • Surimi has been traditionally used as the main ingredient in gelling foods, such as imitation crab sticks. However, it can also be used to manufacture snacks without gelling properties. To assess the properties of surimi as a snack ingredient, we prepared fried fish snacks with different surimi grades of Alaska pollack (AP) and threadfin bream (TB) and evaluated their quality characteristics. AP had significantly higher protein and gel strength values than TB did. Regarding color, TB showed significantly lower lightness (L) values and higher redness (a) and yellowness (b) values than AP did, consistent with the appearance of a brown color. TB had significantly lower hardness values, higher thickness expansion, and higher oil content than AP did. Hardness was found to be positively correlated with gel strength and negatively correlated with oil content. In the micro-structure images, more blistering was formed in TB, indicating higher expansion and crispiness. In the sensory evaluation, TB showed higher overall sensory acceptance than AP did, which is the result of its high color content, crispiness, taste, and aroma. Principal component analysis of the electronic nose and tongue revealed that the samples were clearly separated. In particular, TB had more aromatic components than AP in the electronic tongue. Our findings indicate that gel strength, which determines the quality properties of surimi, does not need to be considered in snack manufacturing. In fact, surimi with low gel strength is a more suitable ingredient for snack manufacturing.

An integral quasi-3D computational model for the hygro-thermal wave propagation of imperfect FGM sandwich plates

  • Abdelouahed Tounsi;Saeed I. Tahir;Mohammed A. Al-Osta;Trinh Do-Van;Fouad Bourada;Abdelmoumen Anis Bousahla;Abdeldjebbar Tounsi
    • Computers and Concrete
    • /
    • v.32 no.1
    • /
    • pp.61-74
    • /
    • 2023
  • This article investigates the wave propagation analysis of the imperfect functionally graded (FG) sandwich plates based on a novel simple four-variable integral quasi-3D higher-order shear deformation theory (HSDT). The thickness stretching effect is considered in the transverse displacement component. The presented formulation ensures a parabolic variation of the transverse shear stresses with zero-stresses at the top and the bottom surfaces without requiring any shear correction factors. The studied sandwich plates can be used in several sectors as areas of aircraft, construction, naval/marine, aerospace and wind energy systems, the sandwich structure is composed from three layers (two FG face sheets and isotropic core). The material properties in the FG faces sheet are computed according to a modified power law function with considering the porosity which may appear during the manufacturing process in the form of micro-voids in the layer body. The Hamilton principle is utilized to determine the four governing differential equations for wave propagation in FG plates which is reduced in terms of computation time and cost compared to the other conventional quasi-3D models. An eigenvalue equation is formulated for the analytical solution using a generalized displacements' solution form for wave propagation. The effects of porosity, temperature, moisture concentration, core thickness, and the material exponent on the plates' dispersion relations are examined by considering the thickness stretching influence.

Experimental Study on Dark Current Noise to Reduce Background Voltage Level of Optical Emission Spectroscopy (광분광기의 노이즈 감소를 위한 암전류에 대한 실험적 고찰)

  • Youngjun Yuk;Keonwoo Lee;Eunjong Choi;Hyoyoung Kim;Kihyun Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.93-98
    • /
    • 2023
  • As semiconductor devices become highly integrated and process difficulty increases, the need for highly sensitive sensors that can detect micro leaks is increasing. However, the noise contained in the CCD sensor itself acts as an obstacle to detecting fine leaks. In this study, integration time was changed for each condition, the sensor was cooled to 0℃, and the dark voltage level was measured to confirm through experiment the characteristics of the temporal noise included in the CCD sensor, a component of OES (Optical Emission Spectroscopy). When integration time was reduced from 30msec to 10msec, the dark voltage level decreased by about 20.5 % from an average of 151.5mV to 120.5mV. In the case of cooling device, Peltier elements were selected because of their simple structure and small size. During temperature cooling, the target temperature was controlled to within ±0.5℃ through PID control. When cooled from 20℃ to 0℃ using this cooling device, it was confirmed that the dark voltage level decreased by about 7% from an average of 147.0mV to 137.0mV.

  • PDF