Browse > Article
http://dx.doi.org/10.5478/MSL.2019.10.1.11

Comparison of Lipid Profiles in Head and Brain Samples of Drosophila Melanogaster Using Electrospray Ionization Mass Spectrometry (ESI-MS)  

Jang, Hyun Jun (Center for Nano-Bio Measurement, Korea Research Institute of Standard and Science (KRISS))
Park, Jeong Hyang (Department of Brain & Cognitive Sciences, DGIST)
Lee, Ga Seul (Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Lee, Sung Bae (Department of Brain & Cognitive Sciences, DGIST)
Moon, Jeong Hee (Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Choi, Joon Sig (Department of Biochemistry, Chungnam National University)
Lee, Tae Geol (Center for Nano-Bio Measurement, Korea Research Institute of Standard and Science (KRISS))
Yoon, Sohee (Center for Nano-Bio Measurement, Korea Research Institute of Standard and Science (KRISS))
Publication Information
Mass Spectrometry Letters / v.10, no.1, 2019 , pp. 11-17 More about this Journal
Abstract
Drosophila melanogaster (fruits fly) is a representative model system widely used in biological studies because its brain function and basic cellular processes are similar to human beings. The whole head of the fly is often used to obtain the key function in brain-related diseases like degenerative brain diseases; however the biomolecular distribution of the head may be slightly different from that of a brain. Herein, lipid profiles of the head and dissected brain samples of Drosophila were studied using electrospray ionization-mass spectrometry (ESI-MS). According to the sample types, the detection of phospholipid ions was suppressed by triacylglycerol (TAG), or the specific phospholipid signals that are absent in the mass spectrum were measured. The lipid distribution was found to be different in the wild-type and the microRNA-14 deficiency model ($miR-14{\Delta}^1$) with abnormal lipid metabolism. A few phospholipids were also profiled by comparison of the head and the brain in two fly model systems. The mass spectra showed that the phospholipid distributions in the $miR-14{\Delta}^1$ model and the wild-type were different, and principal component analysis revealed a correlation between some phospholipids (phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidylserine (PS)) in $miR-14{\Delta}^1$. The overall results suggested that brain-related lipids should be profiled using fly samples after dissection for more accurate analysis.
Keywords
Lipid profile; Drosophila sampling; Drosophila brain; mass spectrometry (MS); electrospray ionization (ESI);
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Gaskell, S. J. J. Mass Spectrom. 1997, 32, 677.   DOI
2 Banerjee, S.; Mazumdar, S. Int. J. Anal. Chem. 2012, 2012, 1.   DOI
3 Glish, G. L.; Goeringer, D. E. Anal. Chem. 1984, 56, 2291.   DOI
4 Chernushevich, I. V.; Loboda, A. V.; Thomson, B. A. J. Mass Spectrom. 2001, 36, 849.   DOI
5 Van Den Heuvel, R. H. H.; Van Duijn, E.; Mazon, H.; Synowsky, S. A.; Lorenzen, K.; Versluis, C.; Brouns, S. J. J.; Langridge, D.; Van Der Oost, J.; Hoyes, J.; Heck, A. J. R. Anal. Chem. 2006, 78, 7473.   DOI
6 Draper, J.; Lloyd, A. J.; Goodacre, R.; Beckmann, M. Metabolomics. 2013, 9, 4.   DOI
7 Loo, J. A. Mass Spectrom. Rev. 1997, 16, 1.   DOI
8 Han, X.; Gross, R. W. Mass Spectrom. Rev. 2005, 24, 367.   DOI
9 Beck, J. L.; Colgrave, M. L.; Ralph, S. F.; Shei, M. M. Mass Spectrom. Rev. 2001, 20, 61.   DOI
10 Kang, K. B.; Jang, D. S.; Kim, J.; Sung, S. H. Mass Spectrom. Lett. 2016, 7, 45.   DOI
11 Lee, J.; Lee, S.; Kim, B.; Lee, J.; Kim, O. S.; Cha, E. Mass Spectrom. Lett. 2018, 9, 30.   DOI
12 Van Meer, G.; Voelker, D. R.; Feigenson, G. W. Nat. Rev. Mol. Cell Biol. 2008, 9, 1124.   DOI
13 Athenstaedt, K.; Daum, G. Cell. Mol. Life Sci. 2006, 63, 1355.   DOI
14 Gilbert, L. I. Mol. Cell. Endocrinol. 2008, 293, 25.   DOI
15 Kosicek, M.; Hecimovic, S. Int. J. Mol. Sci. 2013, 14, 1310.   DOI
16 Carvalho, M.; Sampaio, J. L.; Palm, W.; Brankatschk, M.; Eaton, S.; Shevchenko, A. Mol. Syst. Biol. 2012, 8, 1.   DOI
17 Bilen, J.; Bonini, N. M. Annu. Rev. Genet. 2005, 39, 153.   DOI
18 Li, L.; Han, J.; Wang, Z.; Liu, J.; Wei, J.; Xiong, S.; Zhao, Z. Int. J. Mol. Sci. 2014, 15, 10492.   DOI
19 McGurk, L.; Berson, A.; Bonini, N. M. Genetics. 2015, 201, 377.   DOI
20 Baker, K. D.; Thummel, C. S. Cell Metab. 2007, 6, 257.   DOI
21 Kliman, M.; Vijayakrishnan, N.; Wang, L.; Tapp, J. T.; Broadie, K.; McLean, J. A. Mol. Biosyst. 2010, 6, 958.   DOI
22 Phan, N. T. N.; Hanrieder, J.; Berglund, E. C.; Ewing, A. G. Anal. Chem. 2013, 85, 8448.   DOI
23 Phan, N. T. N.; Fletcher, J. S.; Ewing, A. G. Anal. Chem. 2015, 87, 4063.   DOI
24 Shevchenko, A.; Simons, K. Nat. Rev. Mol. Cell Biol. 2010, 11, 593.   DOI
25 Philipsen, M. H.; Phan, N. N. T.; Fletcher, J. S.; Malmberg, P.; Ewing, A. G. ACS Chem. Neurosci. 2018, 9, 6, 1462.   DOI
26 Le, M. U. T.; Son, J. G.; Shon, H. K.; Park, J. H.; Lee, S. B.; Lee, T. G. Biointerphases. 2018, 13, 03B414.   DOI
27 Nuwal, T.; Heo, S.; Lubec, G.; Buchner, E. J Proteome Res. 2011, 10, 541.   DOI
28 Jeffries, K. A.; Dempsey, D. R.; Behari, A. L.; Anderson, R. L.; Merkler, D. J. FEBS Lett. 2014, 588, 1596.   DOI
29 Singh, V.; Sharma, R. K.; Athilingam, T.; Sinha, P.; Sinha, N.; Thakur, A. K. J. Proteome Res. 2017, 16, 3863.   DOI
30 Xu, P.; Vernooy, S. Y.; Guo, M.; Hay, B. A.; Curr. Biol. 2003, 13, 790.   DOI
31 Wilm, M. Proteomics. 2011, 10, M111.009407.
32 Hammad, L. A.; Cooper, B. S.; Fisher, N. P.; Montooth, K. L.; Karty, J. A. Rapid Commun. Mass Spectrom. 2011, 25, 2959.   DOI