• 제목/요약/키워드: micro-channel Flow

검색결과 221건 처리시간 0.022초

A Study on the Development of Measurement Techniques for Thermal Flows in MEMS

  • Ko Han-Seo;Yang Sang-Sik;Yoo Jai-Suk;Kim Hyun-Jung
    • Journal of Electrical Engineering and Technology
    • /
    • 제1권3호
    • /
    • pp.387-395
    • /
    • 2006
  • A review on advanced flow visualization techniques is presented particularly for applications to micro scale heat and mass transport measurements. Challenges, development and applications of micro scale visualization techniques are discussed for the study of heating/evaporating thin films, a heated micro channel, and a thermopneumatic micro pump. The developed methods are (1) Molecular Tagging Fluorescence Velocimetry (MTFV) using 10-nm caged seeding molecules (2) Micro Particle Velocimetry (MPIV) and (3) Ratiometric Laser Induced Fluorescence (LIF) for micro-resolution thermometry. These three methods are totally non-intrusive techniques and would be useful to investigate the temperature and flow characteristics in MEMS. Each of these techniques is discussed in three-fold: (1) its operating principle and operation, (2) its application and measurement results, and (3) its future challenges.

좁은 채널 내부의 대향류 화염 거동에 관한 실험적 연구 (An Experimental Study on the Flame Behavior of Opposed Flow Flames in Narrow Channels)

  • 이민정;김남일
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제44회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.9-12
    • /
    • 2012
  • In this study, opposed flow combustion was re-visited in a narrow channel. Various flame behaviors were observed. Due to the confined structure of the combustor in this study, flame structures at very narrow strain rate could be stabilized and their characteristics were investigated. This study will be helpful to understand overall flame behavior of non-premixed flame in a narrow combustion space, and will also be useful to develop small combustors.

  • PDF

마이크로히터에서 반주기 정현곡선의 열부하에 의한 비정상 열전달 연구 (NUMERICAL STUDY OF UNSTEADY HEAT TRANSFER ON MICRO HEATER UNDER HALF-CYCLE SINUSOIDAL HEAT LOAD)

  • 김명준;이희준
    • 한국전산유체공학회지
    • /
    • 제19권4호
    • /
    • pp.1-7
    • /
    • 2014
  • A numerical study of transient conjugate heat transfer on micro heater in a micro-channel substrate under a sinusoidal heat load was conducted. It was found that the time constant is not affected by the maximum heating magnitude of the sinusoidal heat load. However, the time constant increases with low duration of the sinusoidal heating period and low Reynolds number. Moreover, there is a threshold where a heater temperature do not reach to time constant at low thermal diffusivity, low flow rate, and low pulse duration of the sinusoidal heating. The time constant should be considered for transient convective heat transfer under transient sinusoidal heat load in a micro heat sink.

능동적 박막 펌핑에 의한 파운틴 펜 나노 리소그래피 유동 특성에 관한 연구 (A Study on Flow Characteristics of Fountain-pen Nano-Lithography with Active Membrane Pumping)

  • 이진형;이영관;이성근;이석한;김윤제;김훈모
    • 대한기계학회논문집B
    • /
    • 제30권8호
    • /
    • pp.722-730
    • /
    • 2006
  • In this study, the flow characteristics of a FPN (Fountain Pen Nano-Lithography) using active membrane pumping are investigated. The FPN has integrated chamber, micro channel, and high capacity reservoir for continuous ink feed. The most important aspect in this probe provided control of fluid injection using active membrane pumping in chamber. The flow rates in channel by capillary force are theoretically analyzed, including the control of the mass flow rates by the deflection of the membrane. The above results are compared with the numerical simulations that calculated by commercial code, FLUENT. The velocity of the fluid in micro channel shows linear behaviors. And the mass flows are proportional to the second order function of the pumping pressure that is imposed to the membrane.

PEM 연료전지의 단순화된 공기극 채널 내 단일 물방울의 성장 및 이동 특성에 대한 실험적 연구 (Experimental investigation of growth and transport behavior of single water droplet in a simplified channel of PEM fuel cell)

  • 김보경;김한상;민경덕
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.81-84
    • /
    • 2006
  • To investigate the characteristics of water droplet on the gas diffusion layer from both upper-view and side-view of flow channel, a rig test apparatus was designed and fabricated with L-shape acryl plate in a $1mm{\times}1mm$ micro-channel. This experimental device is used to simulate the single droplet growth and its transport process under fuel cell operating condition. As a first step, we investigated the growth and transport of single water droplet with working temperature and air flow velocity. The contact angle and its hysteresis of water droplet at departing moment are measured and analyzed. It is expected that this study can provide the basic understanding of liquid water droplet behavior in gas flow channel and GDL interface during the PEM fuel cell operation.

  • PDF

마이크로 PIV를 이용한 마이크로 분지관에서의 유동해석 (Analysis of Flow in a Microchannel Branch by Using Micro-PIV Method)

  • 윤상열;김경천
    • 대한기계학회논문집B
    • /
    • 제28권9호
    • /
    • pp.1015-1021
    • /
    • 2004
  • Micro-resolution Particle Image Velocimetry(Micro-PIV) was used to measure the flow in a micro-branch(Micro-Bypass). In this paper, effects of particle lump at the tip of a Micro-branch and difficulties of Micro-PIV measurements for microfluidics with branch passage were described. Micro-bypass was composed of a straight channel(200(100)${\mu}$m width ${\times}$ 80${\mu}$m height) and two branches which has 100(50)${\mu}$m width ${\times}$ 80${\mu}$m height. One of branches was straight and the other was curved. Experiments were performed at three regions along streamwise direction(entrance, middle and exit of branch) and five planes along vertical direction (0, ${\pm}$10, ${\pm}$20 ${\mu}$m) for the range of Re=0.24, 1.2, 2.4. Numerical simulation was done to compare with the measurements and understand the effects of particle lump at the tip of branch. And another fluid(3% poly vinyl Alcohol aqueous solution) were adapted for this study, so there were no particle sticking. In this case, we could get velocity difference between straight and curved branches.

채널 형상에 따른 마이크로채널 PCHE의 열전달 및 압력강하 특성 (The Heat Transfer and Pressure Drop Characteristics on Microchannel PCHE with various Configurations)

  • 김윤호;문정은;이규정
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.215-220
    • /
    • 2008
  • A microchannel PCHE is manufactured by the two technologies of micro photo-etching and diffusion bonding. In this paper, heat transfer and pressure drop characteristics by applying various configuration for the flow channel in the microchannel PCHE is experimentally investigated. The flow channel configurations are designed three types such as straight, wavy and offset strip channels. The performance experiment of each configuration is performed for Reynolds numbers in ranges of $100{\sim}700$ under various flow conditions for the hot side and the Reynolds number of cold side is fixed at 350. The inlet temperatures of the hot side and cold side are conducted as $40^{\circ}C$ and $20^{\circ}C$, respectively. The heat transfer performance of wavy channel, which was similar to that of offset strip channel, was much higher than that of straight channel. The effectiveness of wavy channel and offset strip channel was evaluated as about $0.5{\sim}0.9$. The pressure drop of wavy channel was highest among configurations and that of offset strip channel was lower than that of straight channel because the round curved surface of each strip edge was reduced the pressure loss.

  • PDF

Flow Near the Meniscus of a Pressure-Driven Water Slug in Microchannels

  • Kim Sung-Wook;Jin Song-Wan;Yoo Jung-Yul
    • Journal of Mechanical Science and Technology
    • /
    • 제20권5호
    • /
    • pp.710-716
    • /
    • 2006
  • Micro-PIV system with a high speed CCD camera is used to measure the flow field near the advancing meniscus of a water slug in microchannels. Image shifting technique combined with meniscus detecting technique is proposed to measure the relative velocity of the liquid near the meniscus in a moving reference frame. The proposed method is applied to an advancing front of a slug in microchannels with rectangular cross section. In the case of hydrophilic channel, strong flow from the center to the side wall along the meniscus occurs, while in the case of the hydrophobic channel, the fluid flows in the opposite direction. Further, the velocity near the side wall is higher than the center region velocity, exhibiting the characteristics of a strong shear-driven flow. This phenomenon is explained to be due to the existence of small gaps between the slug and the channel wall at each capillary corner so that the gas flows through the gaps inducing high shear on the slug surface. Simulation of the shape of a static droplet inside a cubic cell obtained by using the Surface Evolver program is supportive of the existence of the gap at the rectangular capillary corners. The flow fields in the circular capillary, in which no such gap exists, are also measured. The results show that a similar flow pattern to that of the hydrophilic rectangular capillary (i.e., center-to-wall flow) is always exhibited regardless of the wettability of the channel wall, which is also indicative of the validity of the above-mentioned assertion.

마이크로채널 내부의 저속 유동장 수치해석 (Numerical Analysis of Low-Speed Flows in Micro-Channels)

  • 정찬홍
    • 한국전산유체공학회지
    • /
    • 제9권2호
    • /
    • pp.36-42
    • /
    • 2004
  • Low-speed gas flows in micro-channels are investigated using a kinetic theory analysis. The Boltzmann equation simplified by a collision model is solved by means of a finite difference approximation with the discrete ordinate method. Calculations are made for flows in simple micro-channels and a micro-fluidic system consisting of two micro-channels in series. The results are compared well with those from the DSMC method and an analytical solutions to the Wavier-Stokes equations. It is shown that the present method is a useful tool for the modeling of low-speed flows in micro-channels.

Micro-PIV를 이용한 마이크로 튜브/채널 내에서의 혈장유동 측정 (Measurements of Plasma Flows in Micro-Tube/Channel Using Micro-PIV)

  • 고춘식;윤상열;지호성;김재민;김경천
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2003년도 추계학술대회 논문집
    • /
    • pp.87-90
    • /
    • 2003
  • In this paper, flow characteristics of plasma flow in a micro-tube were investigated experimentally using Micro-PIV. For comparision, the experiments were repeated for DI-water instead of plasma. Both velocity profiles of Plasma and DI-water are well agreed with the theoretical velocity distribution of newtonian fluid. We also carried out generating plasma-in-oil droplet formation at a Y-junction microchannel. In order to clarify the hydrodynamic aspects involved in plasma droplet formation. Rhodamin B were mixed with plasma only for visualization of plasma droplet.

  • PDF