• Title/Summary/Keyword: micro-callus

Search Result 17, Processing Time 0.037 seconds

Effects of a variety of treatments affecting Chinese cabbage protoplast culture, and plant regeneration from protoplast-derived callus (배추 원형질체 배양에 미치는 다양한 처리의 효과와 원형질체 유래 캘러스로부터 신초 재분화)

  • Han, Jeung-Sul;Yoon, Moo-Kyeong;Jeong, Mi-Hye
    • Journal of Plant Biotechnology
    • /
    • v.35 no.3
    • /
    • pp.235-243
    • /
    • 2008
  • Here we describe a procedure for Chinese cabbage protoplast culture and effects of various treatments. Chinese cabbage protoplasts were isolated from different parts of young seedlings as using an enzyme mixture, of which yield was maximized in seven hours around after digestion. The highest rate of initial cell division followed by micro-callus formation was obtained in the medium with 1.0 mg/L 2,4-D, 0.5 mg/L NAA, and 1.0 mg/L BA when the cotyledon-derived protoplasts were cultured. Initiation of cell division and micro-callus proliferation significantly depended upon Chinese cabbage genotype under a same culture circumstances. The micro-calli developed from cotyledon tissue of Norang-Bom cultivar successfully grew toward callus colonies on the solidified medium with 0.2 mg/L zeatin and 0.1 mM spermidine. The callus colonies generated de novo shoots at the maximum frequency of 4.3% on the medium with 5.0 mg/L BA and 1.0 mg/L NM. Our results might be helpful for further studies to enhance the regeneration efficiency in Chinese cabbage protoplast culture.

Cell Growth in Suspension-Culture of Populus nigra var. italica and the Efficiency of Micro-Callus Formation according to Cell Plating Method (Populus nigra var. italica현탁배양(懸濁培養) 세포(細胞)의 생장(生長) 및 Cell Plating방법(方法)에 따른 Micro-Callus형성능력(形成能力))

  • Kim, Chi Moon;Lee, Jae Soon;Kwon, Ki Won
    • Korean Journal of Agricultural Science
    • /
    • v.14 no.2
    • /
    • pp.197-204
    • /
    • 1987
  • In order to know the growth of suspended cells by explant sources, the change of nitrogen contents of cultured cells following the growth periods, capability of micro-callus formation according to cell plating methods, growth of suspended cells on various media, and efficiency of micro-callus formation by using growth regulators and different N strengths were investigated. 1. When suspension culture was tried by using the callus induced from internode and petiole, cell fresh weight and packed cell volume increased with similar way and the growth reached at stationary phase after 12 culture days. 2. N-contents of cultured cells increased upto 3 days and decreased around 6days. But the values increased again upto 9 days, after that they showed gradual decreases. 3. Of cell plating methods, embedding method was the best for micro-callus formation. 4. Growth of suspened cells showed the rest performanoes, when they were cultured on LM medium with 1/2N strengths and BAP 0.01.2.4-D 0.1, and NAA $1.0mg/{\ell}$, after 15 cultured days(upto 76.9 folds). LM medium was better than MS or GD. The combination of auxin and cytokinin was better for cell growing than auxin-treatment only. 5. Micro-callus from single cell and small cell aggregates was formed only on MS and LM media with 2,4-D $1.0mg/{\ell}$.

  • PDF

Callus and Micro-Crown Bud Formation in Vitro from Leaf Explant of Yacon (Polymnia sonchifolia Poeppig & Endlicher) (야콘 (Polymnia sonchifolia Poeppig & Endlicher) 잎의 절편체로부터 캘러스 및 기내 소관아 형성)

  • 두홍수;권태호;박철형;류점호
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.2
    • /
    • pp.101-107
    • /
    • 2000
  • The explants of yacon (Polymnia sonchifolia Poeppig & Endlicher) were cultured to invest th8e dedifferentiation condition, and formative callus from leaf was cultured to find the regeneration and micro-crown bud formation. Basal MS medium was more effective to form callus than 1/2 MS and B$_{5}$ medium. Calli formations from leaf, petiole and lateral bud were more effective on MS medium supplemented with 1.0, 2.0 mg/L 2,4-D and 0.2, 0.4 mg/L kinetin or BA than 1.0, 2.0 mg/L NAA and 0.2, 0.4 mg/L kinetin or BA. Formative callus from leaf was proliferated about 70% on medium supplemented with 1.0 mg/L BA. When callus was proliferated, 63% regeneration rate was shown on medium supplemented with 1.0, 2.0 mg/L BA in case of subculture for 3~4 months but was not shown on medium supplemented with 1.0, 2.0 mg/L kinetin. Micro-crown bud formed as addition of BA at 3~4 months after callus culture and then was obtained many at 5~6 months, it was most formed about 82% on medium supplemented with 5 mg/L BA. Rate of micro-crown bud formation was increased as more over 5 mg/L BA concentration, when this time, however, shoot had thick leaves and short internodes, and then withered before long, Micro-crown bud was formed about 88.0% on medium supplemented with 5% sucrose, that was more increased 28% than with 3% sucrose. The buds of crown bud between harvested in field and formed in vitro were difference only in size, but both were similar in shape according to histological view.

  • PDF

Studies on the Transformation of Crop Plants. IV. Biochemical Characteristics of Embryogenic Callus in Rice (곡물류의 형질전환 유도에 관한 연구 (IV) 벼 배발생 세포의 생화학적 특징)

  • 정병균
    • Journal of Plant Biology
    • /
    • v.36 no.4
    • /
    • pp.377-382
    • /
    • 1993
  • Rice (Oryza saliva L.) calli containing both embryogenic callus (EC) and non embryogenic callus (NEC) regions were initiated from the mature seed on MS medium supplemented with 2.0 mg/L 2,4-D, 0.5 mg/L kinetin. The calli were developed into two callus type which can be distinguished by visual examination depending on color and appearance. In order to illucidate the polypeptide composition between EC and NEC, the total protein extracted from two types of callus was analysed by electrophoresis. By one-dimesional anlaysis of SDS-PAGE and Isoelectric focusing, several protein bands showed quantitative and qualitative difference in each type of callus. The further analysis of the total protein with two-dimensional electrophoresis showed at least 20 EC specific protein and 10 NE specific protein. Also 3 specific protein spots showing micro heterogeneity of 90, 65, 50 kD were detected in EC, while a series of acidic heterologous protein spots were visualized in NEC.in NEC.

  • PDF

The Fine Structure of Callus Derived from Panax ginseng Leaves (인삼의 잎에서 유기된 Callus의 미세구조)

  • 박홍덕
    • Journal of Plant Biology
    • /
    • v.19 no.4
    • /
    • pp.100-106
    • /
    • 1976
  • The fine structure of the callus induced from epidermis of Panax ginseng leaves cultured on Murashige & Skoog medium plus kinetin 0.1mg/l, NAA 0.2mg/l and 2.4-D 0.5mg/l was observed. The cells composing callus tissue are mononucleus. Three types of cells were identified; cells with abundant cytoplasm, cells with relatively differentiated vacuoles and with numerous starch grains in the plastids and ones with highly differentiated vacuoles and with unsaturated lipid granules. Prolamellar body, plastid lamellae, plastid globules, stromacenter, fine tubules, crystal-containing body and DNA-like structures were observed in the stroma of the plastids. The chromoplasts were identified in some cells believed as the mother cells of secretory cells in secretory ducts. Curved or straight micro-fibrils of 100~150A in diameter were observed in the cytoplasm. And the characteristics of cell organelles and cell inclusions and the vacuole formation in callus tissues were discussed.

  • PDF

Silver nitrate and silver-thiosulphate mitigates callus and leaf abscission during Shisham clonal micro-propagation

  • Raturi, Manoj Kumar;Thakur, Ajay
    • Journal of Plant Biotechnology
    • /
    • v.48 no.3
    • /
    • pp.173-178
    • /
    • 2021
  • Basal callus formation and leaf abscission is a problem in clonal micropropagation. We have described an in vitro clonal propagation protocol of Dalbergia sissoo Roxb (shisham) 'FRI-14' in which AgNO3 played important role not only in mitigating problem of leaf abscission and basal callus, but also improved shoot induction and multiplication. Best induction and shoot multiplication was obtained on MS media with 1.5 mg/l 6-BAP and 10 mg/l AgNO3 and half-strength MS media with 0.5 mg/l 6-BAP, 2 mg/l AgNO3 and 50 mg/l Adenine sulphate whereas best ex vitro rooting was obtained with 200 mg/l IBA in pulse treatment.

Effects of Loess, Rhodobacter, and Bacillus Mixture on the Trees Cavity Treatment (수목 공동치료를 위한 황토, Rhodobacter, Bacillus 조합의 효과)

  • Jeong, Sun-Hee;Song, Hwan-Joon;Jeong, Chang-Hwa;Huh, Moo-Ryong
    • Journal of agriculture & life science
    • /
    • v.45 no.4
    • /
    • pp.59-63
    • /
    • 2011
  • The symptoms such as weaken shape, partial and full death in nurse- and old- trees have been mostly caused by the occurrence of cavity. In general, the adaption of poly-urethane has been practised routinely in the way of treatment in cavity. However, the use of poly-urethane was not an effective, but it was related to pollution materials. Here, the experiment was conducted to identify the effects of the treatments of loess or micro-organisms for the alternatives of poly-urethane. The cavities which occurred in Zelkova serrata, Prunus yedoensis and Quercus myrsinaefolia were treated by poly-urethane, loess, mixtured loess and micro-organism (Rhadobacter), and mixtured loess and micro-organism (Rhodobacter + bacillus). As the results of this experiment, it was shown that the treatment of mixtured loess and micro-organism (Rhodobacter + bacillus) induced to develop greater callus formation in the cavity up to 97% in Zelkova serrata, up to 87% in Prunus yedoensis, and by 73% in Quercus myrsinaefolia than the treatment of poly-urethane. But the only loess and mixtured loess and micro-organism (Rhadobacter) was a similar or lower callus formation ratio than poly-urethane.

Effect of Plant Growth Regulators on the Adventitious Root Formation from Bupleurum falcatum Callus (생장조절물질(生長調節物質)이 시호(柴胡) 캘러스의 부정근(不定根) 형성(形成)에 미치는 영향(影響))

  • Seong, Rack-Seon;Cho, Duck-Yee;Soh, Woong-Young
    • Korean Journal of Medicinal Crop Science
    • /
    • v.5 no.1
    • /
    • pp.7-13
    • /
    • 1997
  • Calli induced from the leaf segment of Bupleurum falcatum were cultured on Mu-rashige and Skoog's(MS) medium supplemented with 2, 4-D, IBA, IAA and NAA of 0.1 mg/l , The induction of adventitious roots from callus was the best in MS medium supplemented with 0.1 mg/l 2, 4-D and the lateral root was the same. The pretreatment of 0.1 mg/l 2, 4-D for 120 hours was most effective for the formation and grwoth of adventitious roots. The number of adventitious roots per micro callus pre-treated with 0.1 mg/l 2, 4- D was 5. 3 which was the highest level. The callus subcultured for 4 weeks were best for the adventitious root formation. The callus subcultured for more than 4 weeks decreased the adventitious root formation and turned to brown in color.

  • PDF

Plantlet Regeneration via Somatic Embryogenesis from Hypocotyls of Common Buckwheat (Fagopyrum esculentum Moench.)

  • Kwon, Soo-Jeong;Han, Myong-Hae;Huh, Yoon-Sun;Roy, Swapan Kumar;Lee, Chul-Won;Woo, Sun-Hee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.58 no.4
    • /
    • pp.331-335
    • /
    • 2013
  • Buckwheat sprout is used as vegetable, and also flour for making noodles, and so on. Currently, information about tissue culture in buckwheat is limited and restricted to micro-propagation. We carried out somatic embryogenesis and plant regeneration using hypocotyl segments as explant of the cultivated buckwheat species, Fagopyrum esculentum which differs from existing studies in the growth regulator combinations used. Maximum callus regeneration was induced on MS medium containing 2,4-dichlorophenoxyacetic acid (2,4-D) $2.0mg{\cdot}L^{-1}$, benzyladenine (BA) $1.0mg{\cdot}L^{-1}$ and 3% sucrose. Friable callus was transferred to solidified MS media containing BA ($1.0mg{\cdot}L^{-1}$) with various concentrations of 2,4-dichlorophenoxyacetic acid for the induction of embryogenesis. The optimum concentrations of growth regulators (for regeneration of plantlet) were indole-3-acetic acid ($2.0mg{\cdot}L^{-1}$), Kinetin ($1.0mg{\cdot}L^{-1}$), BA ($1.0mg{\cdot}L^{-1}$). Only 2,4-D did not show any significant effect on callus induction or embryogenesis. Regeneration of embryonic callus varied from 5% to 20%. Whole plants were obtained at high frequencies when the embryogenic calli with somatic embryos and organized shoot primordia were transferred to MS media with 3% sucrose. The main objective of this research was to develop an efficient protocol for plant regeneration for common buckwheat, and to apply in future for genetic transformation.

The Effect of Sintongchukea-tang (Shentongzhuyu-tang) on Bone Fusion in Rib Fractured Rats (신통축어탕(身痛逐瘀湯)이 늑골골절 유발 Rat의 골유합에 미치는 영향)

  • Nam, Dae-Jin;Oh, Min-Seok
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.30 no.3
    • /
    • pp.1-21
    • /
    • 2020
  • Objectives This study was designed to evaluate the bone regeneration effects of Sintongchukea-tang (SC) on rib fractured rats. Methods Rats were randomly divided into 5 groups (normal, control, positive control, SC low [SC-L] and SC high [SC-H]). All groups were subject to fractured rib except normal group. Normal group received no treatment at all. Control group was orally fed with phosphate buffered saline, and positive control group was medicated with tramadol (20 mg/kg). SC group was orally medicated with SC (50 mg/kg, 100 mg/kg) once a day for 14 days. The fracture healing process was observed by x-ray, micro CT and fracture tissue slide was observed by immunohistochemical staining. We analysed levels of transforming growth factor-β1, Ki67, alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2), receptor activator of nuclear factor kappa-β, tartrate resistant acid phosphatase (TRAP) and analysed levels of Osteocalcin in plasma. We measured levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), ALP, blood urea nitrogen (BUN) and creatinine in plasma, for hepatotoxicity and nephrotoxicity of SC. Results Though X-ray and micro-computed tomography, more callus formation was observed and bone union was progressing. Through Hematoxylin and Eosin, callus formation was increased compared to the control group. Runx2 level at SC-H was significantly increased and TRAP level at SC-L was significantly decreased compared with the control group. AST, ALT, ALP, BUN and creatinine were not statistically different from the control group. Conclusions As described above, SC promoted fracture healing by stimulating the bone regeneration factor. And SC shows no hepatotoxicity and nephrotoxicity. In conclusion, it seems that SC helps to promote fracture regeneration and it can be used clinically to patients with fracture.