• Title/Summary/Keyword: micro-CT image

Search Result 70, Processing Time 0.025 seconds

Stress Analysis of the Occlusal Force on the Mandibular First Premolar

  • Yoo, Oui-Sik;Chun, Keyoung-Jin;Yoo, Seung-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.3
    • /
    • pp.214-218
    • /
    • 2009
  • The occlusal force of the tooth leads to loss of tooth tissue owing to attrition and abrasion, and may cause abfraction and pathological change of the dentin. Thus, we developed finite element models, examined them by applying ordinary occlusal force, and analyzed the stress distribution. Specimens used were mandibular first premolars from 15 Korean males and 13 females and were made into finite element models from medical images that were obtained using a Micro-CT. We have found that the irregular feature of the tooth is not only useful to masticating and pronouncing as well known, but it is also suitable for protecting inner tissue by dispersing stress and delivering proper pressure to periodontal tissue to continue a physiological action. Also, image analysis could let us know the factor that is the cause of a disorder due to stress concentration in the cervical line. These results are expected to support the field of dental treatment planning, operating procedure and clinical trial, and the advance of technical expertise to develop implants and dentures.

Evaluation of canal preparation with Ni-Ti rotary files by micro computed tomography

  • Lee, Jeong-Ho;Kim, Mi-Ja;Seok, Chang-In;Lee, Woo-Cheol;Baek, Seung-Ho
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.4
    • /
    • pp.378-385
    • /
    • 2004
  • The purpose of this study was to compare the effects of preparation with GT files and profiles .04 in shaping of root canals and reconstruct the three-dimensional root canal system using micro computed tomography 40 canals of the extracted human mandibular molars were used, and randomly distributed into two experimental groups. In group 1. canals were prepared by GT files. In group 2, Profiles .04. were used. Apical preparation size was #30. For each tooth pre and post operative cross-sectional images were obtained by the micro CT at 50 micron intervals. Pre and post operative cross-sectional images of 1, 2, 3, 5, and 8mm from the apex were compared. For each section. canal area and centering ratio were determined. For each tooth pre- and post-operative root canal volume from the furcation to the apex of the roots was calculated by three-dimensional image software. Following results were obtained: 1. At 8mm from the apex, area of dentin removed by GT rotary file was significantly larger than that by Profile .04. And at the other levels there was not a significant difference. 2. There was a trend for GT rotary file to remain more centered in the canals than Profile .04 at all levels. But at 3mm level. there was a statistically significant difference. 3. In root canal volume increments after instrumentation, there was no significant difference between two groups.

Porosity and pore size distribution in high-viscosity and conventional glass ionomer cements: a micro-computed tomography study

  • Aline Borburema Neves ;Laisa Inara Gracindo Lopes;Tamiris Gomes Bergstrom;Aline Saddock Sa da Silva ;Ricardo Tadeu Lopes ;Aline de Almeida Neves
    • Restorative Dentistry and Endodontics
    • /
    • v.46 no.4
    • /
    • pp.57.1-57.9
    • /
    • 2021
  • Objectives: This study aimed to compare and evaluate the porosity and pore size distribution of high-viscosity glass ionomer cements (HVGICs) and conventional glass ionomer cements (GICs) using micro-computed tomography (micro-CT). Materials and Methods: Forty cylindrical specimens (n = 10) were produced in standardized molds using HVGICs and conventional GICs (Ketac Molar Easymix, Vitro Molar, MaxxionR, and Riva Self-Cure). The specimens were prepared according to ISO 9917-1 standards, scanned in a high-energy micro-CT device, and reconstructed using specific parameters. After reconstruction, segmentation procedures, and image analysis, total porosity and pore size distribution were obtained for specimens in each group. After checking the normality of the data distribution, the Kruskal-Wallis test followed by the Student-Newman-Keuls test was used to detect differences in porosity among the experimental groups with a 5% significance level. Results: Ketac Molar Easymix showed statistically significantly lower total porosity (0.15%) than MaxxionR (0.62%), Riva (0.42%), and Vitro Molar (0.57%). The pore size in all experimental cements was within the small-size range (< 0.01 mm3), but Vitro Molar showed statistically significantly more pores/defects with a larger size (> 0.01 mm3). Conclusions: Major differences in porosity and pore size were identified among the evaluated GICs. Among these, the Ketac Molar Easymix HVGIC showed the lowest porosity and void size.

Development of RVE Reconstruction Algorithm for SMC Multiscale Modeling (SMC 복합재료 멀티스케일 모델링을 위한 RVE 재구성 알고리즘 개발)

  • Lim, Hyoung Jun;Choi, Ho-Il;Yoon, Sang Jae;Lim, Sang Won;Choi, Chi Hoon;Yun, Gun Jin
    • Composites Research
    • /
    • v.34 no.1
    • /
    • pp.70-75
    • /
    • 2021
  • This paper presents a novel algorithm to reconstruct meso-scale representative volume elements (RVE), referring to experimentally observed features of Sheet Molding Compound (SMC) composites. Predicting anisotropic mechanical properties of SMC composites is challenging in the multiscale virtual test using finite element (FE) models. To this end, an SMC RVE modeler consisting of a series of image processing techniques, the novel reconstruction algorithm, and a FE mesh generator for the SMC composites are developed. First, micro-CT image processing is conducted to estimate probabilistic distributions of two critical features, such as fiber chip orientation and distribution that are highly related to mechanical performance. Second, a reconstruction algorithm for 3D fiber chip packing is developed in consideration of the overlapping effect between fiber chips. Third, the macro-scale behavior of the SMC is predicted by the multiscale analysis.

Classification and visualization of primary trabecular bone in lumbar vertebrae

  • Basaruddin, Khairul Salleh;Omori, Junya;Takano, Naoki;Nakano, Takayoshi
    • Advances in biomechanics and applications
    • /
    • v.1 no.2
    • /
    • pp.111-126
    • /
    • 2014
  • The microarchitecture of trabecular bone plays a significant role in mechanical strength due to its load-bearing capability. However, the complexity of trabecular microarchitecture hinders the evaluation of its morphological characteristics. We therefore propose a new classification method based on static multiscale theory and dynamic finite element method (FEM) analysis to visualize a three-dimensional (3D) trabecular network for investigating the influence of trabecular microarchitecture on load-bearing capability. This method is applied to human vertebral trabecular bone images obtained by micro-computed tomography (micro-CT) through which primary trabecular bone is successfully visualized and extracted from a highly complicated microarchitecture. The morphological features were then analyzed by viewing the percolation of load pathways in the primary trabecular bone by using the stress wave propagation method analyzed under impact loading. We demonstrate that the present method is effective for describing the morphology of trabecular bone and has the potential for morphometric measurement applications.

The Effect of Low-intensity Pulsed Ultrasound on Osteogenesis in Mini-pig Mandibles (Mini-pig 하악골에서 저강도진동초음파가 골형성에 미치는 영향)

  • Yun, Yeong-Eun;Lee, Jun;Min, Seung-Ki;Kim, Sang-Jung
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.33 no.6
    • /
    • pp.467-477
    • /
    • 2011
  • Purpose: The objective of this study was to examine the affected period and the amount of bone formation during osteogenesis of intramembranous bone using low-intensity pulsed ultrasound (LPUS) $in$ $vivo$. Methods: Xeno-bone (Bio-oss) and autogenous bone were grafted bilaterally into mini-pig mandibles. The left mandible served as the control and the other mandible was treated with 3 MHz, 160 mW (output, 0.8 mW) ultrasound stimulation for 7 days 15 minutes per day. The mini-pigs were sacrificed at 1, 2, 4, and 8 weeks, and micro computed tomography (${\mu}CT$), a microscopic examination, and a statistical analysis were performed on the specimens. Results: Based on a computerized image analysis of the ${\mu}CT$ scans, the experimental group had an average 150% more new bone formation than that in the control group. The effect of LPUS continued during the post operative 2 weeks. The histomorphological microscopic examination showed similar results. Conclusion: Our results suggest the LPUS had an effect on early intramembranous bone formation in vivo.

Ex vivo Morphometric Analysis of Coronary Stent using Micro-Computed Tomography (미세단층촬영기법을 이용한 관상동맥 스텐트의 동물 모델 분석)

  • Bae, In-Ho;Koh, Jeong-Tae;Lim, Kyung-Seob;Park, Dae-Sung;Kim, Jong-Min;Jeong, Myung-Ho
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.2
    • /
    • pp.93-98
    • /
    • 2012
  • Micro-computed tomography (microCT) is an important tool for preclinical vascular imaging, with micron-level resolution. This non-destructive means of imaging allows for rapid collection of 2D and 3D reconstructions to visualize specimens prior to destructive analysis such as pathological analysis. Objectives. The aim of this study was to suggest a method for ex vivo, postmortem examination of stented arterial segments with microCT. And ex vivo evaluation of stents such as bare metal or drug eluting stents on in-stent restenosis (ISR) in rabbit model was performed. The bare metal stent (BMS) and drug eluting stent (DES, paclitaxel) were implanted in the left or right iliac arteries alternatively in eight New Zealand white rabbits. After 4 weeks of post-implantation, the part of iliac arteries surrounding the stent were removed carefully and processed for microCT. Prior to microCT analysis, a contrast medium was loaded to lumen of stents. All samples were subjected to an X-ray source operating at 50 kV and 200 ${\mu}A$ by using a 3D isotropic resolution. The region of interest was traced and measured by CTAN analytical software. Objects being exposed to radiation had different Hounsfield unit each other with values of approximately 1.2 at stent area, 0.12 ~ 0.17 at a contrast medium and 0 ~ 0.06 at outer area of stent. Based on above, further analyses were performed. As a result, the difference of lengths and volumes between expanded stents, which may relate to injury score in pathological analysis, was not different significantly. Moreover, ISR area of BMS was 1.6 times higher than that of DES, indicating that paclitaxel has inhibitory effect on cell proliferation and prevent infiltration of restenosis into lumen of stent. And ISR area of BMS was higher ($1.52{\pm}0.48mm^2$) than that of DES ($0.94{\pm}0.42mm^2$), indicating that paclitaxel has inhibitory effect on cell proliferation and prevent infiltration of restenosis into lumen of stent. Though it was not statistically significant, it showed that the extent of neointema of mid-region of stents was relatively higher than that of anterior and posterior region in parts of BMS as showing cross-sectional 2-D image. suggest that microCT can be utilized as an accessorial tool for pathological analysis.

Biomechanical Evaluation of Cement type hip Implants as Conditions of bone Cement and Variations of Stem Design (골시멘트 특성 및 스템 형상에 따른 시멘트 타입 인공관절의 생체역학적 평가)

  • Park, H.S.;Chun, H.J.;Youn, I.C.;Lee, M.K.;Choi, K.W.
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.3
    • /
    • pp.212-221
    • /
    • 2008
  • The total hip replacement (THR) has been used as the most effective way to restore the function of damaged hip joint. However, various factors have caused some side effects after the THR. Unfortunately, the success of the THR have been decided only by the proficiency of surgeons so far. Hence, It is necessary to find the way to minimize the side effect caused by those factors. The purpose of this study was to suggest the definite data, which can be used to design and choose the optimal hip implant. Using finite element analysis (FEA), the biomechanical condition of bone cement was evaluated. Stress patterns were analyzed in three conditions: cement mantle, procimal femur and stem-cement contact surface. Additionally, micro-motion was analyzed in the stem-cement contact surface. The 3-D femur model was reconstructed from 2-D computerized tomography (CT) images. Raw CT images were preprocessed by image processing technique (i.e. edge detection). In this study, automated edge detection system was created by MATLAB coding for effective and rapid image processing. The 3-D femur model was reconstructed based on anatomical parameters. The stem shape was designed using that parameters. The analysis of the finite element models was performed with the variation of parameters. The biomechanical influence of each parameter was analyzed and derived optimal parameters. Moreover, the results of FE A using commercial stem model (Zimmer's V erSys) were similar to the results of stem model that was used in this study. Through the study, the improved designs and optimal factors for clinical application were suggested. We expect that the results can suggest solutions to minimize various side effects.

Evaluation of marginal leakage of bulk fill flowable composite resin filling with different curing time using micro-computed tomography technology (Bulk fill 유동성 복합레진의 변연 누출에서 다른 중합시간의 영향에 대해 마이크로시티를 이용한 평가)

  • Kim, Eun-Ji;Lee, Kyu-Bok;Jin, Myoung-Uk
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.32 no.3
    • /
    • pp.184-193
    • /
    • 2016
  • Purpose: To evaluate marginal leakage of bulk fill flowable composite resin filling with different curing time by using microcomputed tomography technology. Materials and Methods: 30 previously extracted human molars were randomly divided into 6 groups based upon restorative system and different curing time. Class II cavities (vertical slot cavities) were prepared. An individual metallic matrix was used to build up the proximal wall. The SonicFill or SureFil SDR flow was inserted into the preparation by using 1 bulk increment, followed by light polymerization for different curing times. The different exposure times were 20, 40, and 60 seconds. All specimens were submitted to 5,000 thermal cycles for artificial aging. Micro-CT scanning was performed by using SkyScan 1272. One evaluator assessed microleakage of silver nitrated solution at the resin-dentin interface. The 3D image of each leakage around the restoration was reconstructed with CT-Analyser V.1.14.4. The leakage was analyzed with the Mann-Whitney test. Results: Significant differences were observed between the light curing times, but no significant differences were found between the bulk fill composite resins. Increasing in the photoactivation time resulted in greater microleakage in all the experimental groups. Those subjected to 60 seconds of light curing showed higher microleakage means than those exposed for 20 seconds and 40 seconds. Conclusion: Increasing the photoactivation time is factor that may increase marginal microlekage of the bulk fill composite resins. Further, micro-CT can nondestructively detect leakage around the resin composite restoration in three dimensions.

The Influence of Microwave Sintering Process on the Adaptation of CAD/CAM Zirconia Core (마이크로 웨이브 소결 과정이 CAD/CAM 지르코니아 코아의 적합도에 미치는 영향)

  • Kim, Keun Bae;Kim, Jee Hwan;Lee, Keun-Woo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.2
    • /
    • pp.95-107
    • /
    • 2009
  • The purpose of this research was to examine the fitness of zirconia cores that were made by different sintering methods; generic electricity furnace and microwave furnace. Firstly, 12 cores for each group were made by using each different sintering process and attached them to a metal die with silicon. The internal and marginal gap of sintered zirconia was measured by using Skyscan 1076 micro-CT, then it was reorganized by CT-An software. To each samples, we extracted B-L image, M-D image of cutting side, and cross-sectional side of tooth long axis and calculated the mean value of marginal, axial, and occlusal gap each side. Results: 1. The mean marginal gap of sintered zirconia was $36.20{\mu}m$ for EVE, $47.67{\mu}m$ for LAV, $52.47{\mu}m$ for DEN, and $54.63{\mu}m$ for CER. 2. For the axial wall, the research showed the largest value of $63.49{\mu}m$ for EVE, but there were no statistical significance. 3. In related to the occlusal internal measurement, DEN showed the smallest value ($77.06{\mu}m$), EVE and CER showed significantly high value. From this study, it is suggested that CAD/CAM zirconia core which was made in the process of microwave sintering has clinically acceptable values in marginal and internal gap.