• Title/Summary/Keyword: micro viscosity

Search Result 180, Processing Time 0.026 seconds

Micro-Fibrillated Cellulose Preparation with Enzyme Beating Pretreatment and Effect on Paper Strength Improvement (Enzyme beating 전처리를 통한 Micro-Fibrillated Cellulose 제조 및 지력증강 효과)

  • Ahn, Eun-Byeol;Hong, Sung-Bum;Kim, Kang-Jae;Eom, Tae-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.6
    • /
    • pp.57-65
    • /
    • 2015
  • Microfibrillated cellulose (MFC) or Nanofibrillated cellulose (NFC) has been used to reduce the use of raw pulp and to improve paper strength. The problem of MFC preparation is high manufacturing cost. In this study, it was carried out to prepare MFC after enzyme beating and estimated properties of MFC. Endo-D was the best beating efficiency among three type of endo-glucanase. As the grinder pass number increased, the viscosity and the fines of MFC suspension increased while the crystallinity and the porosity of MFC sheet decreased. Also enzyme beating MFC was higher value in the crystallinity and lower value in the viscosity than non-enzyme MFC. In addition, the aspect ratio of MFC was the highest at 5 pass. MFC addition improved the handsheet strength and the air permeability but worsened the drainage.

Study on a rheology of PS/PP blends flowing in a micro channel (마이크로 채널을 흐르는 PS/PP 블렌드의 유변학적 특성에 관한 연구)

  • Son, Young-Gon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.1023-1026
    • /
    • 2010
  • In this paper, rheological property of polymer blends in a confined geometry was investigated. The shear viscosity was measured in a capillary rheometer incorporated with a specially designed piston and three slit dies having 0.1, 0.2 and 0.5 mm in thickness. It was observed that the viscosity of polymer blends does not depend on the die size when the phase of polymer blends is a sea-island structure. However, when the phase of polymer blends is a co-continuous structure, the viscosity of the blends was dependent on the die size. By additional investigations, this result is attributed to the slip phenomenon between polymer phases in the blends.

Experimental Study on Spray Etching Process In Micro Fabrication of Lead Frame

  • Jung, Ji-Won;Choi, Gyung-Min;Kim, Duck-Jool
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2294-2302
    • /
    • 2004
  • The objective of this study is to obtain detailed information for the micro fabrication of lead frames by applying spray technology to wet etching process. Wet etching experiments were performed with different etching parameters such as injection pressure, distance from nozzle tip to etched substrate, nozzle pitch and etchant temperature. The characteristics of single and twin spray were measured to investigate the correlation between the spray characteristics and the etching characteristics. Drop size and velocity were measured by Phase-Doppler Anemometer (PDA). Four liquids of different viscosity were used to reveal the effects of viscosity on the spray characteristics. The results indicated that the shorter the distance from nozzle tip and the nozzle pitch, the larger etching factor became. The average etching factor had good positive correlation with average axial velocity and impact force. It was found that the etching characteristics depended strongly on the spray characteristics.

Effect of Particle Size in Feedstock Properties in Micro Powder Injection Molding

  • Baek, Eung-Ryul;Supriadi, Sugeng;Choi, Chul-Jin;Lee, Byong-Taek;Lee, Jae-Wook
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.41-42
    • /
    • 2006
  • Small powder size is very useful in achieving detailed structures. STS 316 nanopowders with an average diameter of 100 nm and $5{\mu}m$ were utilized to produce feedstock. The mixing behavior of the feedstock indicated that the nanoparticle feedstock produced the highest mixing torque at various powder loading compared to the micropowder feedstock. The nanoparticles feedstocks showed that elastic properties are dominant in flow behavior and high viscosity. Conversely the micropowders feedstocks, viscous properties are dominant in flow behavior and less viscosity, nanopowders feedstock perform lower flow activation energy than feedstock with bigger particles.

  • PDF

Micro Propulsion under High Altitude Space Environments (우주진공환경에서의 마이크로 추진)

  • Jung, Sung-Chul;Huh, Hwan-Il
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.405-408
    • /
    • 2008
  • From the previous researches about flow characteristic of micro-nozzle, we found that viscosity and back pressure induced heavy losses in micro nozzle. To overcome thess losses, we began to study new conceptual micro propulsion system that is thermal transpiration based micro propulsion system. It has no moving parts and can pump the gaseous propellant by temperature gradient only (cold to hot). Most of previous research on thermal transpiration is in its early stage and mainly studied for application to small vacuum facility or gas chromatography in ambient condition using nanoporous material like aerogel. In this study, we focus on basic research of propulsion system based on thermal transpiration using polyimide material in vacuum conditions.

  • PDF

Motion of Charged Micro-particle Immersed in Liquid Crystal Controlled by In-plane Field for Electro Paper Display

  • Baik, In-Su;Choi, Ju-Hwan;Jung, Byoung-Sun;Jeon, Sang-Youn;Song, Eun-Kyoung;Lee, Seung-Hee
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.1
    • /
    • pp.30-35
    • /
    • 2006
  • We have studied the motion of charged micro-particles that are immersed in a nematic liquid crystal (LC) and controlled by in-plane field. The LC is an anisotropic liquid such that the viscosity of the LC depends on flow direction, phase of the LC, and temperature, which affects the motion of the charged particles under the influence of electric field. This study shows that the motion of charged particles mainly depends on the applied voltage and the LC phase, but does not show any significant influence from the initial alignment of LC, although one may expect directional difference in drag force due to interaction between LC and particle. The viscosity changes due to temperature variations in nematic phase also show no signification influence on particle velocity when compared to the effect from varying in-plane field strength.

Enhancement of Convective Heat Transfer by Using a Micro-Encapsulated Phase-Change-Material Slurry (피복된 미립 상변화물질 슬러리를 이용한 대류 열전달의 향상에 관한 연구)

  • Jung, Dong-Ju;Choi, Eun-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.9
    • /
    • pp.1277-1284
    • /
    • 2000
  • To enhance heat transfer characteristics of water, micro-encapsulated octadecane of about $10{\mu}m$ diameter was added to water. Viscosity of the slurry was measured by using a capillary tube viscometer. The measured viscosity decreased as the temperature of the slurry increased, and it increased as the fraction of the capsules in the slurry increased. Thermal characteristics of the octadecane were studied by using a differential scanning calorimeter. The melting temperature and the melting energy of the octadecane were found to be $28.6^{\circ}$ and 34.4kcal/kg, respectively. The convective heat transfer characteristics of the slurry were investigated in a flow loop with a constant heat flux test section. Friction factor of the slurry flow was found to be similar to the expected curve by Petukhov. The Nusselt number of the slurry flow was highest when the octadecane melted. Effective thermal capacity of the 14.2% slurry was found to have 1.67 times of the thermal capacity of water.

Effects of Oil and Internally Finned Tubes on the Performance of the Air-Conditioning Unit (전열관 형상과 냉동기유 효과를 고려한 공조기기의 성능예측)

  • Yun, J.Y.;Lee, K.S.;Lee, D.J.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.4
    • /
    • pp.388-398
    • /
    • 1994
  • Computer simulation model for predicting more accurately the heat transfer performance of the evaporator and condenser which have significantly affected on the performance of air-conditioner has been suggested. In this model oil and micro-fin tube used in a actual unit are considered to simulate the more realistic case. The effects of oil and micro-fin tube on the performance of an air-conditioner have been investigated. It is found that the present model requires higher pressure than the existing model due to the characteristics of the tube considered. However, it turns out that the present model is very close to an actual cycle. As the amount of oil inside the tube increases, condensation heat transfer coefficient shows a linear decrease irrespective of a kind of oil, while evaporation heat transfer coefficient increases slightly in the oil with low viscosity and decreases exponentially in the oil with high viscosity. Pressure drop in both evaporator and condenser increases linearly irrespective of a kind of oil. It is also found that the effect of the variation of oil concentration on the magnitude of two-phase region is negligible.

  • PDF

The Formation of Rope- and Pebbles-Type Aggregation from the Micro-End-to-End and -Side-by-Side Aggregates in Poly(L-proline) Solutions

  • 김현돈
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.9
    • /
    • pp.929-933
    • /
    • 1997
  • Morphological studies in the micro-end-to-end (m-E-E) and micro-side-by-side (m-S-S) aggregations were conducted by using of scanning electron microscope (SEM) for the samples precipitated by heating of the end-products of the transition of FormⅡ (left-handed helix, three peptides per turn, 31) Form Ⅰ (right-handed helix, 3.3 peptides per turn, 103) in poly(L-proline) (PLP) in acetic acid(water)-propanol (1:9 v/v) solvent. The observed morphology for the solide state shows a rope (or super helical) type and pebbles type aggregate for the (m-E-E) and (m-S-S) aggregate respectively. The viscosities were also measured during the heat-precipitation in order to elucidate the process of formation of the rope- and pebbles-type aggregates. The result for the (m-E-E) aggregations exhibit two steps, i.e., at first, the viscosity increases with time (step 1), thereafter it decrease until attain the last value (step 2). But the (m-S-S) aggregations show only one step in the decreases in viscosity. On the bases of all experimental results it is possible to propose a reasonable mechanism for the formation of the two types of aggregates of the (m-E-E) and (m-S-S).

Numerical Simulation of Pulsatile Flows around Micro-Stenosis for Blood Analog Fluids (혈액모사유체의 미세협착 주변 맥동유동 시뮬레이션)

  • Song, Jae Min;Hong, Hyeonji;Ha, Yi Kyung;Yeom, Eunseop
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.2
    • /
    • pp.10-16
    • /
    • 2019
  • Considering the role of viscosity in the hemorheology, the characteristics of non-Newtonian fluid are important in the pulsatile blood flows. Stenosis, with an abnormal narrowing of the vessel, contributes to block blood flows to downstream tissue and lead to plaque rupture. Therefore, systematic analysis of blood flow around stenosed vessels is crucial. In this study, non-Newtonian behaviors of blood analog fluids around the micro-stenosis with 60 % severity in diameter of $500{\mu}m$ was examined by using CFX under the pulsatile flow conditions with the period of 10 s. Viscosity information of two non-Newtonian fluids were obtained by fitting the value of normal blood and highly viscous blood. As the Newtonian fluid, the water at room temperature was used. During the pulsatile phase, wall shear stress (WSS) is highly oscillated. In addition, high viscous solution gives rise to increases the variation in the WSS around the micro-stenosis. Highly oscillating WSS enhance increasing tendency of plaque instability or rupture and damage of the tissue layer. These results, related to the influence on the damage to the endothelium or stenotic lesion, may help clinicians understand relevant mechanisms.