• Title/Summary/Keyword: micro power generation

Search Result 222, Processing Time 0.031 seconds

Design of 500W Class UMGT for Power Generation (500W급 발전용 초소형 가스터빈 설계)

  • Seo, Jeong-Min;Choi, Bum-Seok;Park, Jun-Young;Park, Cheol-Hoon;Kim, You-Il
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.1207-1214
    • /
    • 2011
  • Design of 500W class UMGT(Ultra Micro Gas Turbine) for power generation is conducted. Basic design parameters are obtained by cycle analysis. Off-design performances are predicted by 1D aerodynamic design and 1D performance analysis of compressor and turbine. 3D impellers are designed and 3D performance analysis is carried out to predict the performance characteristics of UMGT. 1D and 3D performance analysis show similar results. Structure analysis is conducted to select materials. Titanium Alloy is proposed for structural stability.

Development of Micro Turbine based on MEMS Technology (MEMS 기술을 이용한 마이크로 터빈의 개발)

  • 전병선;박건중;민홍석;김세준;송성진;주영창;민경덕
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.120-124
    • /
    • 2002
  • Microturbine refers to turbines on the scale of centimeters which can transmit power on the order of tens of Watts. Such devices can be used as propulsion or power generation devices for various military systems. An interdisciplinary team at Seoul National University has designed, and fabricated such a device, and this paper describes each phase. A commercial code has been used for design, and MEMS processes have been used for manufacturing. Finally, some preliminary test results are presented.

Optimal Engineering of MicroGrid on the Environmental Cost and Operation Type (환경비용 및 운용방식을 고려한 마이크로그리드 최적 엔지니어링 연구)

  • Park, Jung-Sung;Shin, Hye-Kyeong;Lee, Duck-Su;Lee, Hak-Seong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.369-371
    • /
    • 2008
  • Environmental issue is one of the key factors to industry area using fossil fuels, because it accelerates the global warming. So it is supposed to reduce greenhouse gases around the developed nations of the world at times go. This issue is especially for the power industry. Under this background, CHP system that consists of Distributed Energy Resources (DER) system, such as natural power system (wind, solar) and fuel-cell, co-generation, also known as CHP (Combined heat and power), has been developed greatly during the last 10 years. This paper adopts optimal model using GAMS to develop methods for conducting an integrated assessment of MicroGrid system.

  • PDF

An Application of Optimization method for Efficient Operation of Micro Grid (마이크로그리드의 효율적 운영을 위한 최적화기법의 응용)

  • Kim, Kyu-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.12
    • /
    • pp.50-55
    • /
    • 2012
  • This paper presents an application of optimization method for efficient operation in micro grid. For operational efficiency, the objective function in a diesel generator consists of the fuel cost function similar to the cost functions used for the conventional fossil-fuel generating plants. The wind turbine generator is modeled by the characteristics of variable output. The cost function of fuel cell plant considers the efficiency of fuel cell. Particle swarm optimization(PSO) and sequential quadratic programming(SQP) are used for solving the problem of microgrid system operation. Also, from the results this paper presents the way to attend power markets which can buy and sell power from upper lever grids by connecting a various generation resources to micro grid.

Micro Thermal System Component Development (마이크로 열시스템 부품 설계)

  • 전병선;박건중;민홍석;제갈승;김세준;방정환;송성진;주영창;민경덕
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.23-27
    • /
    • 2002
  • Micro turbine that is a component of micro thermal system refers to turbines on the scale of centimeters which can transmit power on the order of tens of Watts. Such devices can be used as propulsion or power generation devices for various potable and micro devices. An interdisciplinary team at Seoul National University has designed, fabricated and tested such a device, and this paper describes each phase. A commercial code has been used for design, and MEMS processes have been used for manufacturing. Finally, some preliminary test results are presented.

  • PDF

Dynamic model and simulation of microturbine generation system for grid-connected operation (마이크로터빈발전시스템 계통연계운전을 위한 동적 모델링 및 시뮬레이션)

  • Hong, Won-Pyo;Cho, Jea-Hoon
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.105-110
    • /
    • 2009
  • Distributed Generation (DG) is predicted to play a important role in electric power system in the near future. insertion of DG system into existing distribution network has great impact on real-time system operation and planning. It is widely accepted that micro turbine generation (MTG) systems are currently attracting lot of attention to meet customers need in the distributed power generation market In order to investigate the performance of MT generation systems, their efficient modeling is required. This paper presents the modeling and simulation of a MT generation system suitable for grid-connected operation. The system comprises of a permanent magnet synchronous generator driven by a MT. A brief description of the overall system is given, and mathematical models for the MT and permanent magnet synchronous generator are presented. Also, the use of Power electronics in conditioning the power output of the generating system is demonstrated. Simulation studies with MATLAB/Simulink have been carried out in grid-connected operation mode of a DG system. The control strategies for grid connected operation mode of DG system is also presented.

  • PDF

Cooling System Control of Building Integrated Photovoltaic Generation Using Micro-controller (마이크로 컨트롤러를 이용한 BIPV 발전의 냉각시스템 제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Jung, Chul-Ho;Kim, Do-Yeon;Jung, Byung-Jin;Park, Ki-Tae;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1120-1121
    • /
    • 2008
  • This paper is proposed cooling system of BIPV(Building Integrated Photovoltaic) by micro-controller. The output power of PV generation system is not systematically tracked and influenced by various factors; solar irradiance, solar cell temperature. The temperature of solar module should be minimized to increase electrical output. Therefore, it is proposed that micro-controller cools to decrease temperature of solar module using thermoelement. The validity of this paper is proved by comparing solar module temperature of cooling system and un-cooling system.

  • PDF

Flow Visualization of Magnetic Particles under the external magnetic field in bubbly flow using Single Plane Illumination Microscopy - MicroPIV (Single Plane Illumination Microscopy - MicroPIV를 이용한 버블 유동에서 외부 자계 영향을 받는 자성입자 가시화)

  • Lee, Changje;Cho, Gyeong-rae;Lee, Sangyoup
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.1
    • /
    • pp.36-42
    • /
    • 2021
  • This study measured the velocity of magnetic particles inside the power generation using external heat sources. Single Plane Illumination Microscopy (SPIM) was used to measure magnetic particles that are simultaneously affected by bubbly flow and magnetic field. It has the advantage of reducing errors due to particle superposition by illuminating the thin light sheet. The hydraulic diameter of the power generation is 3mm. Its surface is covered with a coil with a diameter of 0.3 mm. The average diameter of a magnetic particle is 200nm. The excitation and emission wavelengths are 530 and 650nm, respectively. In order to find out the flow characteristics, a total of four velocity fields were calculated in wide and narrow gap air bubbles, between the wall and the air bubble and just below the air bubble. Magnetic particles showed up to 8.59% velocity reduction in the wide gap between air bubbles due to external magnetic field.

Effect of Rise Time of a Pulse Bias Voltage on Atmospheric Plasma Generation (대기압 플라즈마 발생시 인가전압의 상승시간에 따른 영향)

  • Kim, Jae-Hyeok;Jin, Sang-Il;Kim, Young-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.7
    • /
    • pp.1218-1222
    • /
    • 2008
  • We investigate the effect of rise time of a pulse bias voltage on atmospheric plasma generation. With the faster rise time of the pulse bias, the glow discharge appears to be more uniformly generated along the electrodes. I-V measurement confirms that higher loading power can be obtained using the faster rise time. A new understanding for atmospheric plasma generation at a micro-gap electrode is suggested.

Magnetic Micro-Deflector for a Microcolumn System (초소형 전자칼럼을 위한 마이크로 자기장 디플렉터 연구)

  • Kim, Young-Chul;Kim, Dae-Wook;Ahn, Seung-Joon;Kim, Ho-Seob;Park, Seong-Soon;Park, Kyoung-Wan;Hwang, Nam-Woo
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.6
    • /
    • pp.426-431
    • /
    • 2007
  • We have fabricated a magnetic micro-deflector for a microcolumn system and tested its performance by operating it in the low energy region. The micro-deflector is composed of Cu coils around cylindrical cores with $500{\mu}m$ diameter. The diameter of the Cu coil itself is $100{\mu}m$. Two pairs of deflectors designed for a 2-dimensional scan, that is X and Y deflection, are fixed on an insulating plate. The low power performance of a magnetic micro-deflector attached to a microcolumn system has been tested and the magnitude of deflection is measured to be ${\sim}100{\mu}m/A$, which offers the possibility for practical applications of the magnetic micro-deflector.