• Title/Summary/Keyword: micro fluid

Search Result 592, Processing Time 0.023 seconds

A Study on the Novel Micro Mixer for the Application of LOC (LOC적용을 위한 새로운 마이크로믹서의 연구)

  • Choi, Bum-Kyoo;Lee, Seung-Hyeon;Kang, Ho-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.6
    • /
    • pp.143-149
    • /
    • 2008
  • This paper presents the results of the study on the novel micro mixer. Existing micro mixer is classified as active mixing and passive mixing by the mixing principles. Both mixing principles have problems. For solving these problems, this research has developed the novel micro mixers based on a totally different principle compared with former mixers. They not only have a simpler structure than former ones but also are able to achieve high mixing efficiency in spite of low power consumption due to using Lorentz Force. In addition, they are designed to increase the efficiency of mixing by changing the rotating direction of fluid with a polar switching circuit. Driving forces of the mixer are Lorentz force and a moving force of fluid due to electrophoresis. Because the efficiency of mixer is affected by electrode shape, several models have been made. The computer simulation has been made to estimate the efficiency of each mixer.

Surface Finishing Technique for Micro 3-Dimensional Structures Using ER Fluid

  • Kim, Wook-Bae;Lee, Sang-Jo;Kim, Yong-Jun;Lee, Eung-Sug
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.1
    • /
    • pp.47-54
    • /
    • 2004
  • In this study, the electrorheological (ER) fluid was used as finishing agent. Since the apparent viscosity can be controlled by an electric field, the ER fluid can be one of efficient materials in finishing processes. To finish small 3-dimensional structures such as the aspherical surface in optical elements, the possible arrangement of a tool, part and auxiliary electrode was described. We examined the influence of the addition of a few abrasive particles on the performance of the ER fluid by measuring yield stress and observed the behavior of abrasive particles in the ER fluid by a CCD camera, which had been also theoretically predicted from the electromechanical principles of particles. On the basis of the above results, the steady flow analysis around the rotating micro tool was performed considering the non-uniform electric field. Finally, borosilicate glass was finished using the mixture of the ER fluid and abrasive particles and material removal with field strength and surface roughness were investigated.

Ultraprecision Polishing Technique for Micro 3-Dimensional Structures using ER Fluids (ER 유체를 이용한 미세3차원 행상의 초정밀연마)

  • 김욱배;이상조;김용준;이응숙
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.12
    • /
    • pp.134-141
    • /
    • 2002
  • The ER fluid can be one of efficient materials in ultraprecision polishing for optics, ceramics and semiconductors because of electrically controllable apparent viscosity. To finish small 3 dimensional structures such as the aspherical surface in optical elements, the possible arrangement of a tool, workpiece and auxiliary electrode is described. We examined the influence of the addition of a few abrasive particles on the performance of the ER fluid by measuring yield stress, and observed the behavior of abrasive particles in the ER fluid by a CCD camera, which is also theoretically predicted from the electromechanical principles of particles. On the basis of the above results, the steady flow analysis around the rotating micro tool is worked out considering the non-uniform electric field. Finally, Pyrex glass is polished using the mixture of the ER fluid and abrasive particles, and the effect of the electric field strength is evaluated.

Promising candidate cerebrospinal fluid biomarkers of seizure disorder, infection, inflammation, tumor, and traumatic brain injury in pediatric patients

  • Kim, Seh Hyun;Chae, Soo Ahn
    • Clinical and Experimental Pediatrics
    • /
    • v.65 no.2
    • /
    • pp.56-64
    • /
    • 2022
  • Cerebrospinal fluid (CSF) is a dynamic metabolically active body fluid that has many important roles and is commonly analyzed in pediatric patients, mainly to diagnose central nervous system infection and inflammation disorders. CSF components have been extensively evaluated as biomarkers of neurological disorders in adult patients. Circulating microRNAs in CSF are a promising class of biomarkers for various neurological diseases. Due to the complexity of pediatric neurological disorders and difficulty in acquiring CSF samples from pediatric patients, there are challenges in developing CSF biomarkers of pediatric neurological disorders. This review aimed to provide an overview of novel CSF biomarkers of seizure disorders, infection, inflammation, tumor, traumatic brain injuries, intraventricular hemorrhage, and congenital hydrocephalus exclusively observed in pediatric patients.

Valveless piezoelectric micro-pump exploiting two sided disk type vibrator (디스크형 진동자의 연동 운동을 이용하는 밸브리스 마이크로 압전 펌프)

  • Oh, Jin-Heon;Lim, Jong-Nam;Jeong, Eui-Hwan;Lim, Kee-Joe
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.159-159
    • /
    • 2009
  • Existence of physical moving parts (ex. check valve) produces several problems (mechanical abrasion, deterioration of reliability, limited temperature performances etc.) in driving pumps. To overcome such problems, we proposed a valveless piezoelectric micro-pump which has new type volume transferring mechanism. The proposed micro-pump has a double faced disk type vibrator that can generate peristaltic motion formed by traveling wave in each surface of a disk. This type of micro-pump is able to apply to a fluid supply system that provides two different kinds of fluid simultaneously. In this paper, we propose a simple and novel design of piezoelectric micro-pump that is peristaltically by piezoelectric actuators and allows the removal of the need for valves of other physically moving parts. The finite elements analysis on the proposed pump model was carried out to verify its operation principle using the commercial analysis software.

  • PDF

Output Optimization of Microhydro Kaplan Turbine by Double Regulating Runner and Guide Vane (러너와 가이드 베인의 연동을 통한 마이크로 카프란 수차의 출력 최적화)

  • Park, No-Hyun;Rhee, Young-Woo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.1
    • /
    • pp.17-23
    • /
    • 2013
  • Recently so much attention has been focused on renewable energy and, since its sources to exploit are already almost saturated in the country, the practical alternative to this situation could be a micro-turbine which uses the low head and low flow. From a point of view of local micro-turbine design capacity and manufacturing technology, the problems such as the accumulation of technical skills, the expansion of related industries, the national policy expansion and the turbine efficiency to improve are still vulnerable and it's true that there are also negative views about the economic feasibility, the technicity and the operation management of the micro-turbine. However, if the improvement can be done in technology of low-head double regulation micro-turbine to generate more outputs and the operation management can be reliably realized, the micro-turbine will be re-evaluated as an appliable source of renewable energy, even the output is small, and by a paradigm shift, it could realize a power generation as an economic and rational system.

The Study of SWOT(Strength-Weakness-Opportunity-Threat) Analysis for Micro-robot Technology Development and Trend of S. Korea (SWOT분석을 통한 한국 마이크로 로봇의 발전방안)

  • Lee, Sang-Yun;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.4
    • /
    • pp.881-895
    • /
    • 2012
  • Micro-robots are utilized as useful tools in diagnosis and treatment of various human diseases. At present, lots of countries are developing and making many micro-robots. Government of S. Korea are trying to push ahead with the plan as technology policy, for the same reason. So this study examined about micro-robot technology development and trend of S. Korea, by using the method of SWOT(Strength-Weakness-Opportunity-Threat) analysis. As a result, the future policy for micro-robot of S. Korea is to further spur the development of new micro-robot technology and more improvement of the technology level of micro-robots registered by patent as 'micro-robot of bacterium base for lesion treatment' and 'micro-robot moved by compressive fluid'. Finally, It was already confirmed as high level, technology of 'micro-robot of bacterium base for lesion treatment' and 'micro-robot moved by compressive fluid' invented at S. Korea.

Numerical Simulation of Supercritical $CO_2$ Flow in a Geological Storage Reservoir of Ocean (해양 지중저장층내 초임계 $CO_2$ 유동에 대한 전산모사)

  • Choi, Hang-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.4
    • /
    • pp.251-257
    • /
    • 2011
  • In the present study, a 3-dimensional (3D) numerical model was developed to mimic the micro porous structure of a geological $CO_2$ storage reservoir. Especially, 3D modeling technique assigning random pore size to a 3D micro porous structure was devised. Numerical method using CFD (computational fluid dynamics) was applied for the 3D micro porous structure to calculate supercritical $CO_2$ flow field. The three different configurations of 3D micro porous model were designed and their flow fields were calculated. For the physical conditions of $CO_2$ flow, temperature and pressure were set up equivalent to geological underground condition where $CO_2$ fluid was stored. From the results, the characteristics of the supercritical $CO_2$ flow fields were scrutinized and the influence of the micro pore configuration on the flow field was investigated. In particular, the pressure difference and consequent $CO_2$ permeability were calculated and compared with increasing $CO_2$ flow rate.