• Title/Summary/Keyword: micro fluid

Search Result 591, Processing Time 0.027 seconds

Nonlinear Characteristics of Low-speed Flow Induced Vibration for the Safety Design of Micro Air Vehicle

  • Chang, Tae-Jin;Kim, Dong-Hyun;Lee, In
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.11
    • /
    • pp.873-881
    • /
    • 2002
  • The fluid induced vibration (FIV) phenomena of an equivalent airfoil system of MAV have been investigated in low Reynolds number flow region. Unsteady flows with viscosity are computed using two-dimensional incompressible Navier-Stokes equations. The present fluid/structure interaction analysis is based on one of the most accurate computational approach with computational fluid dynamics (CFD) and computational structural dynamics (CSD) techniques. The highly nonlinear fluid/structure interaction phenomena due to severe flow separations have been analyzed for the low Reynolds region that has a dominancy of flow viscosity. The effects of Reynolds number and initial angle of attack on the fluid/structure coupled vibration instability are shown and the qualitative trend of FIV phenomenon is investigated.

The study of three dimentional flow field using defocusing method in micromixer (Defocusing 기법을 이용한 마이크로 믹서내의 3 차원 유동장 측정연구)

  • Kim, Su-Heon;Yoon, Sang-Youl;Kim, Kyung-Chun
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.99-102
    • /
    • 2005
  • This study was conducted for obtaining the optimized data to build the mixer or micro fluid device as measuring the three dimensions flow field in micro mixer. To acquire the rapid diffusion on the region of low Reynolds (Re < 100), the staggered herringbone mixer using chaotic advection was selected in this case. At first, by conducting the numerical analytical virtual experiment using CFD-ACE+, three dimensions flow field in the micro mixer was estimated As this flow field was proven using defocusing particle tracing method, the behavior of micro flow with three dimensional aspects could be analyzed. Numerical analysis and flow pattern in the micro mixer by experimental verification made to be able to analyze the chaotic advection. These can be important sources for building more optimized form. Verifying the information of three dimensional flow structure, these information can be used as the data for developing and improving the $\mu$ -TAS.

  • PDF

Micro Power System Development (마이크로 파워 시스템의 개발)

  • Park, Kun-Joons;Jeon, Byung-Sun;Min, Hong-Seok;Song, Seung-Jin;Min, Kyoung-Doug;Joo, Young-Chang
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.381-386
    • /
    • 2001
  • This paper reports on the development of micro power system under way at Seoul National University. The interdisciplinary tin consists of members with various backgrounds of mechanics and materials. The need for micro power systems is explained, and a turbine under development is described. Design, and fabrication are introduced, and technical challenges in each phase are described. Furthermore, the interaction between the available fabrication methods and design is explained. Design involves use of commercially available codes to analyze flow fields, and fabrication takes advantage of the silicon wafer etching processes used to manufacture semiconductor devices.

  • PDF

Development of A New Device for Controlling Infinitesimal Flows inside a Lab-On-A-Chip and Its Practical Application (랩온어칩 내부 미세유동 제어를 위한 새로운 장치의 개발 및 적용)

  • Kim, Bo-Ram;Kim, Guk-Bae;Lee, Sang-Joon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.305-308
    • /
    • 2006
  • For controlling micro-flows inside a LOC (lab-on-a-chip) a syringe pump or an electronic device for EOF(electro-osmotic flow) have been used in general. However, these devices are so large and heavy that they are burdensome in the development of a portable micro-TAS (total analysis system). In this study, a new flow control system employing pressure chambers, digital switches and speed controllers was developed. This system could effectively control the micro-scale flows inside a LOC without any mechanical actuators or electronic devices We also checked the feasibility of this new control system by applying it to a LOC of micro-mixer type. Performance tests show that the developed control system has very good performance. Because the flow rate in LOC is controlled easily by throttling the speed controller, the flows in complicate microchannels network can be also controlled precisely.

  • PDF

Numerical Study on The Pressure Drop of Immiscible Two-Phase Flow in The Pressure Driven Micro Channel Using Lattice Boltzmann Method (Lattice Boltzmann 방법을 이용한 압력구동 미세채널 내 비혼합 2상 유체 흐름의 압력강하에 대한 수치적 연구)

  • Jeong, Soo-In;Kim, Kui-Soon;Kang, Beom-Soon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.436-439
    • /
    • 2008
  • Computer simulation of multiphase flows has grown dramatically in the last two decades. In this work, we have studied the flow characteristics of immiscible two fluids in a 2-D micro channel driven by pressure gradient using multi-phase lattice Boltzmann method suggested by Shan and Chen(1993) considering the fluid-surface interaction. we tried to examine the effects of parameters related to the two phase flow characteristics and pressure drop in the micro channel like contact angle and channel configuration by changing their value. The results of current study could show the lattice Boltzmann method can simulate the behaviors of two phase flow in the region of micro fluidics well.

  • PDF

Numerical Study on FC-72 Condensing Flow in a Micro-Channel (마이크로채널 내의 FC-72 흐름응축에 관한 수치적 연구)

  • Kim, Sung-Min
    • Journal of the Korean Society of Visualization
    • /
    • v.13 no.1
    • /
    • pp.30-34
    • /
    • 2015
  • This study concerns flow and heat transfer characteristics of FC-72 condensing flow in a micro-channel. A computational model of condensing flow with a hydraulic diameter of 1 mm is constructed using the FLUENT computational fluid dynamics code. The computed void fraction contour plots are presented for different mass velocities. The smooth-annular, wavy-annular, transition and slug flows are observed with the model, which are quite similar to those observed in a micro-channel experiment. The computed two-phase condensing heat transfer coefficient is compared with previous empirical correlation for two-phase condensation heat transfer in micro-channels.

High Temperature Air Foil Bearings for Micro Turbine (마이크로 터빈용 고온 포일 베어링 개발)

  • Kim, Kyeong Su;Kim, Seung Woo;Lee, In
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.104-108
    • /
    • 2004
  • Micro turbine is an electric power generating system using a gas turbine whose rated power is under 300kW, and it is featured as a small, efficient. maintenance free and environment-friendly system. Air foil bearing has several advantages over conventional bearings for micro turbine because it is oilless and non-contact. Recently, air foil bearings for high temperature over $500^{\circ}C$ has been developed for the application of 65kW micro turbine system. In this paper, the development and current status are summarized in detail.

  • PDF

Phase-change Temperature of Micro-encapsulated Phase-change Material (미립 피복 상변화 물질의 상변화 온도에 대한 연구)

  • 최은수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.2
    • /
    • pp.168-174
    • /
    • 2002
  • In order to obtain a new heat transfer fluid having a high thermal capacity, micro-capsules of a phase-change material can be a successful candidate to be added into water. In this study, 25, 50, 100, and $200\mu$m diameter micro-encapsulated Lauric acids were tested by a differential scanning calorimeter. The Lauric acid itself had a single freezing curve, but the micro-encapsulated Lauric acid had double freezing curves. The second freezing dominated for $25\mu$m diameter Lauric acids. But the first freeing energy became big as the size of the capsule increased.

Characteristics of Absorption Heat Transfer on Micro-Scale Hatched Tubes with Different Surface Roughness (미소해칭 전열관의 표면거칠기에 따른 흡수열전달 특성)

  • 조현철;김춘동;김익생;박찬우;강용태
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.8
    • /
    • pp.641-647
    • /
    • 2002
  • Objectives of this paper are to investigate the effect of roughness of micro-hatching tubes on the absorption performance and to develop on experimental correlation of Nusselt as a function of the roughness. Three different micro-scale hatched tubes and a bare tube were tested in the present experiment. $H_{2}O/LiBr$ solution is used as working fluid. It was found that absorption performance of micro-scale hatched tubes were improved upto 2 times with an error band of ${\pm}25%$ compared with the bare tube. An experimental correlation of Nusselt was developed as a function of the roughness.

A Micro-Flow Sensor With Multiple Temperature Sensing Elements for Wide Range Flow Velocity Measurement (다단계 온도 감지막을 가진 고영역 흐름측정용 마이크로 흐름센서)

  • Chung Wan-Young;Kim Tae-Yong;Seo Yong-Su
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.1
    • /
    • pp.85-92
    • /
    • 2006
  • A new silicon micro flow sensor with multiple temperature sensing elements was proposed and fabricated in considering wide range flow velocity measuring device. Thermal mass flow sensor measures the asymmetry of temperature profile around the heater which is modulated by the fluid flow. A micro mass flow sensor was normally composed of a central heater and a pair of temperature sensing elements around it. A new 2-D wide range micro flow sensor structure with three pairs of temperature sensing elements and a central heater was proposed and numerically simulated by Finite Difference Formulation to confirm the feasibility of the wide flow range sensor structure. To confirm the simulation result, the new flow sensor was fabricated on silicon substrate and the basic flow sensing properties of the sensor were measured.