• Title/Summary/Keyword: micro element

Search Result 820, Processing Time 0.025 seconds

Design of UHF Band Microstrip Antenna for Recovering Resonant Frequency and Return Loss Automatically (UHF 대역 공진 주파수 및 반사 손실 오토튜닝 마이크로스트립 안테나 설계)

  • Kim, Young-Ro;Kim, Yong-Hyu;Hur, Myung-Joon;Woo, Jong-Myung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.3
    • /
    • pp.219-232
    • /
    • 2013
  • This paper presents a microstrip antenna which recovers its resonant frequency and impedance shifted automatically by the approach of other objects such as hands. This can be used for telemetry sensor applications in the ultrahigh frequency(UHF) industrial, scientific, and medical(ISM) band. It is the key element that an frequency-reconfigurable antenna could be electrically controlled. This antenna is miniaturized by loading the folded plates at both radiating edges, and varactor diodes are installed between the radiating edges and the ground plane to control the resonant frequency by adjusting the DC bias asymmetrically. Using this voltage-controlled antenna and the micro controller peripheral circuits of reading the returned level, the antenna is designed and fabricated which recovers its resonant frequency and impedance automatically. Designed frequency auto recovering antenna is conformed to be recovered within a few seconds when the resonant frequency and impedance are shifted by the approach of other objects such as hand, metal plate, dielectric and so on.

Multi-scale Analysis of Thin film Considering Surface Effects (표면효과를 고려한 박막구조의 멀티스케일 해석)

  • Cho, Maeng-Hyo;Choi, Jin-Bok;Jung, Kwang-Sub
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.287-292
    • /
    • 2007
  • In general, the response of bulk material is independent of its size when it comes to considering classical elasticity theory. Because the surface to bulk ratio of the large solids is very small, the influence of surface can be negligible. But the surface effect plays important role as the surface to bulk ratio becomes larger, that is, the contribution of the surface effect must be considered in nano-size elements such as thin film or beam structure. Molecular dynamics computation has been a conventional way to analyze these ultra-thin structures but this method is limited to simulate on the order of $10^6{\sim}10^9$ atoms for a few nanoseconds, and besides, very time consuming. Analysis of structures in submicro to micro range(thin-film, wire etc.) is difficult with classical molecular dynamics due to the restriction of computing resources and time. Therefore, in this paper, the continuum-based method is considered to simulate the overall physical and mechanical properties of the structures in nano-scale, especially, for the thin-film.

Solidification of Molten Salt Waste by Gel-Route Pre-treatment (겔화 전처리법을 이용한 폐용융염의 고형화)

  • Park Hwan Seo;Kim In Tae;Kim Hwan Young;Ryu Seung Kon;Kim Joon Hyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.1
    • /
    • pp.57-65
    • /
    • 2005
  • This study suggested a new method for the solidification of molten salt waste generated from the electro-metallurgical process in the spent fuel treatment. Using binary material system, sodium silicate and phosphoric acid, metal chlorides were converted into metal phosphate in the micro-reaction module formed by SiO$_{2} particles. The volatile element in the reaction module would little vaporized below 1100$^{circ}$C After the gel product was mixed with borosilicate glass powder and thermally treated at 1000$^{circ}$C, li exists as Li$_{3}$PO$_4$ separated from glass phase and, Cs and Sr would be incorporated into an amorphous phase from XRD analysis. In case of the addition of ZrCl$_{4}$ to the binary system, the gel products were transformed into NZP structure considered as an prospective ceramic waste form after heat-treatment above 700 $^{circ}$C. From these results, the gel-route pretreatment can be considered as an effective approach to the solidincation of molten salt waste by the confirmed process or waste form and this also would be an alternative method on the ANL method using zeolites in USA by the confirmation of its chemical durability as an future work.

  • PDF

Electrochemical Characteristics of Zn and Si Ion-doped HA Films on Ti-6Al-4V by PEO Treatment

  • Lim, Sang-Gyu;Hwang, In-Jo;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.199-199
    • /
    • 2016
  • Commercially pure titanium (cp-Ti) and Ti alloys (typically Ti-6Al-4V) display excellent corrosion resistance and biocompatibility. Although the chemical composition and topography are considered important, the mechanical properties of the material and the loading conditions in the host have, conventionally. Ti and its alloys are not bioactive. Therefore, they do not chemically bond to the bone, whereas they physically bond with bone tissue. The electrochemical deposition process provides an effective surface for biocompatibility because large surface area can be served to cell proliferation. Electrochemical deposition method is an attractive technique for the deposition of hydroxyapatite (HAp). However, the adhesions of these coatings to the Ti surface needs to be improved for clinical used. Plasma electrolyte oxidation (PEO) enables control in the chemical com position, porous structure, and thickness of the $TiO_2$ layer on Ti surface. In addition, previous studies h ave concluded that the presence of $Ca^{+2}$ and ${PO_4}^{3-}$ ion coating on porous $TiO_2$ surface induced adhesion strength between HAp and Ti surface during electrochemical deposition. Silicon (Si) in particular has been found to be essential for normal bone and cartilage growth and development. Zinc (Zn) plays very important roles in bone formation and immune system regulation, and is also the most abundant trace element in bone. The objective of this work was to study electrochemical characteristcs of Zn and Si coating on Ti-6Al-4V by PEO treatment. The coating process involves two steps: 1) formation of porous $TiO_2$ on Ti-6Al-4V at high potential. A pulsed DC power supply was employed. 2) Electrochemical tests were carried out using potentiodynamic and AC impedance methoeds. The morphology, the chemical composition, and the micro-structure an alysis of the sample were examined using FE-SEM, EDS, and XRD. The enhancements of the HAp forming ability arise from $Si/Zn-TiO_2$ surface, which has formed the reduction of the Si/Zn ions. The promising results successfully demonstrate the immense potential of $Si/Zn-TiO_2$ coatings in dental and biomaterials applications.

  • PDF

A Study on Dissolve and Remove Analysis of Organic Chemicals Using a Mixed Method of Advanced Oxidation and Micro Filtering - Water Drinking Point - (고도산화와 정밀여과의 혼성공법을 이용한 유기화학물질의 분해 및 제거분석에 관한 연구 - 먹는 물을 중심으로 -)

  • An, Tai-Young;Jun, Sang-Ho;Ahn, Tae-Seok;Han, Mi-Ae;Hur, Jang-Hyun;Pak, Mi-Young
    • Membrane Journal
    • /
    • v.17 no.2
    • /
    • pp.99-111
    • /
    • 2007
  • It is impossible to remove toxic organic substances that are recognized as a cancer caused suspicious element in drinking water using the conventional water purification method. This study introduces groundwater into a reaction chamber as an effective amount of water to process this water using a mixed method of AOP oxidation and M/F membrane and purifies it as a desirable level by artificially mixing such toxic substances in order to effectively process the water. Based on this fact, this study configures an optimal operation condition. The VOCs existed in toxic substances was investigated as a term of phenol and toluene, and agricultural chemicals were also investigated as a term of parathion, diazinon and carbaryl. The experiment applied in this study was performed using a single and composite soolution. In the operation condition applied to fully dissolve and remove such substances, the amount of $H_2O_2$ injected in the process was 150 mL of a fixed quantity, the value of pH was configured as $5.5{\sim}6.0$, the temperature was controlled as a range of $12{\sim}16^{\circ}C$, the dissolved amount of ozone was applied more than 5.0 mg/L, the reaction time was determined as an optimal condition, such as $30{\sim}40$ minutes, and the segregation membrane in the same reactor was determined for acquire water drinking of large quantity using a pore size of $0.45{\mu}m$ M/F membrane.

Icing Wind Tunnel Tests to Improve the Surface Roughness Model for Icing Simulations (착빙 해석의 표면 거칠기 모델 개선을 위한 착빙 풍동시험 연구)

  • Son, Chankyu;Min, Seungin;Kim, Taeseong;Kim, Sun-Tae;Yee, Kwanjung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.8
    • /
    • pp.611-620
    • /
    • 2018
  • For the past decades, the analytic model for distributed surface roughness has been developed to improve the accuracy of the icing simulation code. However, it remains limitations to validate the developed model and determine the empirical parameters due to the absence of the quantitative experimental data which were focused on the surface state. To this end, the experimental study conducted to analyze the ice covered surface state from a micro-perspective. Above all, the tendency of the smooth zone width which occurs near the stagnation point has been quantitatively analyzed. It is observed that the smooth zone width is increased as growing the ambient temperature and freestream velocity. Next, the characteristics of the ice covered surface under rime and glaze ice have been analyzed. For rime ice conditions, ice elements are developed as the opaque circular corn in the opposite direction of freestream. The height and interval of each circular corn are increased as rising the ambient temperature. For glaze ice conditions, numerous lumps of translucent ice can be observed. This is because the beads formed by gravity concentrate and froze on the lower surface.

A Study on Fouling Characteristics and Applicability of Fouling Reducer in Submerged MBR Process (침지형 MBR공정에서 파울링 특성과 파울링 완화제의 적용성에 관한 연구)

  • Park, Jun Won;Park, Hong June;Kim, Min Ho;Oh, Yong Keol;Park, Chul Hwi
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.5
    • /
    • pp.371-380
    • /
    • 2013
  • Though MBR process has many advantages, the greatest risk factors in operating MBR process are occurrence of membrane fouling and decrease of flux. It is very difficult to find exact mechanism due to complex influence by many effects, although there have been recently many studies of membrane fouling. The purposes of this study are firstly evaluating bioreactor of lab-scale and micro-filtration hollow fiber membrane, secondly investigating correlation between foulants affecting membrane performance and membrane fouling, and lastly evaluating various parameters affecting fouling and applicability of membrane fouling reducer. This study found that TMP was increasing rapidly and showed 0.32 bar and the average of flux was 88 LMH. EPS concentration tends not to change much above MLSS concentration (6,000 mg/L). However, EPS concentration variation is wide below MLSS concentration (6,000 mg/L). Also, from results of membrane surface condition and element analysis using SEM/EDX, carbon and fluorine were founded to be the highest percentage in membrane because of characteristics of membrane material. In operating continuously, inorganic fouling was generated by increase of these inorganic substances such as $Al^{3+}$ and $Mg^{2+}$. Lastly, the best filtration performance was obtained for 0.03 mg MFR/mg MLSS by results of particle size, zeta potential, $SCOD_{cr}$, EPS and MLSS concentration.

Effect of Mineral Nutrient Control on Nutrient Uptake, Growth and Yield of Single-Node Cutting Rose Grown in a Closed Hydroponic System (순환식 수경재배시 무기이온 조절이 Single-Node Cutting 장미의 양분흡수, 생육 및 품질에 미치는 영향)

  • Yang, Eun-Young;Park, Keum-Soon;Oh, Jeong-Sim;Lee, Hye-Jin;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.17 no.4
    • /
    • pp.252-260
    • /
    • 2008
  • This study was conducted to observe the characteristics of mineral nutrient uptake of single-node cutting rose 'Versilla' and to determine optimal nutrient solution control method for soilless culture of 'Versilla' in a closed hydroponic system. Nutrient solution was managed by five different control methods: macro- and micro-element control in aeroponic system (M&M), macroelement control in aeroponic system (M), nutrient solution supplement in aeroponic system (S); electrical conductivity (EC) control in aeroponic system(EC-A); EC control in deep flow technique system(EC-D). The concentration of $NO_3$-N exceeds optimal range whereas P and Mg decreased at the later stage of plant growth with the EC control method, EC-A and EC-D. The overall mineral nutrient content increased with S. On the other hand the nutrient content at the root environment was maintained optimal with M&M and M. The nutrient solution control methods had significantly effect on the cut-flower quality. In the M&M and M, flower length, fresh weight and root activity were higher than those with the other mineral nutrients control methods. The maximal efficiency of photochemistry (Fv/Fm) was higher for M&M, M and S than that with EC-A and EC-D. Based on the above results, it is highly recommended to control nutrient solution by mineral nutrient control methods (M&M and M) in a closed hydroponic system for single-node cutting rose, 'Versillia'.

A Study on the Development of Smart Water Grid Service (스마트 워터 그리드 서비스 Framework 개발에 관한 연구)

  • Kim, Seong Hoon;Oh, Hyunje;Jung, Jinhong;Kim, Weonjae;Yoon, Young H.
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.6143-6150
    • /
    • 2012
  • The current society, namely information society is now moving to a specific topic which is SMART. In this sense, recently a variety of social areas including communications and SOC domains are moving fast to this topic. In Korea, The electric power area has been doing a pioneering job relatively successfully and the water supply area is just now taking the first step. The purpose of this research is to develop a technical Framework for Smart Water Grid Service. Related researches has been studied and the 4 constituting technical element areas were defined first. For each of the four areas, a framework modeling was fulfilled and as a result, a TRM(Technical Road Map) was suggested for each of the area. Finally, an Enterprise TRM covering all of the 4 areas was described. Furthermore, the currently suggested Framework model was compared to a related model and it was found that the integration of the models is desirable to wholly cover from Macro to Micro level applications and services. It is expected that the current approach contribute, more or less, to the smart implementation in the areas of water management.

Reappraisal of Empowerment through Giddens's Theory of Reflexivity -In Quest of the Integrated Paradigm for Social Welfare Practice- (기든스(Giddens)의 성찰성 이론을 통한 임파워먼트의 재해석 -통합적 사회복지실천 패러다임에 대한 탐색-)

  • Choi, Myungmin;Kim, Giduk
    • Korean Journal of Social Welfare
    • /
    • v.65 no.2
    • /
    • pp.103-130
    • /
    • 2013
  • Although both ecosystem theory and empowerment have become the most prevalent candidate for integrated paradigm for social welfare practices, they could not overcome completely the long-standing and sharp divides between micro and macro practices, that is, between subject and structure as a main explanatory element in social welfare realm. Along with such traditional dualism and tension, a new emerging divide between modernism and postmodernism regarding intrinsic mission and roles of social welfare has urged strongly to develop the overarching theoretical framework for social welfare practice. In this regard, this study aims to recast the ecosystem theory and empowerment through the reflexive modernization theory of critical sociologist Anthony Giddens. With relatively strong emphasis on human capability coined as the reflexivity, Giddens's own creative theory of modernization can be thoroughly expected to provide a solid foundation of integrated paradigm enough to bridge the existing dualisms in social welfare theory and practice. Especially, his unique account of integrated way of how human agency is involved in the construction of social structure and how to transform each other recursively has profound implication for empowerment to be adequate and proper comprehensive framework for social welfare practice.

  • PDF