DOI QR코드

DOI QR Code

Icing Wind Tunnel Tests to Improve the Surface Roughness Model for Icing Simulations

착빙 해석의 표면 거칠기 모델 개선을 위한 착빙 풍동시험 연구

  • Son, Chankyu (Depart. of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Min, Seungin (Depart. of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Kim, Taeseong (Dept. of Wind Energy, Technical University of Denmark) ;
  • Kim, Sun-Tae (Agency for Defense Development) ;
  • Yee, Kwanjung (Depart. of Mechanical and Aerospace Engineering, Seoul National University)
  • Received : 2018.05.18
  • Accepted : 2018.07.20
  • Published : 2018.08.01

Abstract

For the past decades, the analytic model for distributed surface roughness has been developed to improve the accuracy of the icing simulation code. However, it remains limitations to validate the developed model and determine the empirical parameters due to the absence of the quantitative experimental data which were focused on the surface state. To this end, the experimental study conducted to analyze the ice covered surface state from a micro-perspective. Above all, the tendency of the smooth zone width which occurs near the stagnation point has been quantitatively analyzed. It is observed that the smooth zone width is increased as growing the ambient temperature and freestream velocity. Next, the characteristics of the ice covered surface under rime and glaze ice have been analyzed. For rime ice conditions, ice elements are developed as the opaque circular corn in the opposite direction of freestream. The height and interval of each circular corn are increased as rising the ambient temperature. For glaze ice conditions, numerous lumps of translucent ice can be observed. This is because the beads formed by gravity concentrate and froze on the lower surface.

수치해석을 이용한 항공기 착빙 형상 예측의 정확도 향상을 위하여 거칠기 분포 예측이 가능한 해석적 모델이 개발되고 있다. 그러나 표면의 상태에 대한 정량적인 실험 결과가 거의 없어 해석적 모델을 검증하고, 경험적인 변수를 결정하는데 어려움을 겪고 있다. 이에 본 연구에서는 표면의 상태를 미시적 관점에서 분석하기 위한 실험적 연구를 수행하였다. 우선, 착빙 환경 변수인 온도와 자유류 속도에 따른 매끈한 표면의 넓이의 관계를 정량적으로 파악하였다. 그 결과 대기 온도가 높고 자유류 속도가 증가할수록 매끈한 표면의 넓이가 증가하였다. 그 다음으로 서리 얼음 표면과 유리얼음 표면의 특성을 분석하였다. 서리얼음 조건에서는 불투명한 원뿔 형태의 얼음 요소들이 유동 반대 방향으로 성장하고, 대기 온도가 증가함에 따라 원뿔 얼음 요소들의 길이와 간격이 감소하는 것을 확인하였다. 유리얼음 조건에서는 반투명한 얼음 덩어리를 날개 아랫면에서 관찰할 수 있었다. 이러한 원인은 중력의 영향이 큰 아랫면에서 주로 리블렛이 형성되고, 이와 같이 형성된 리블렛이 집중하여 얼어붙었기 때문이다.

Keywords

References

  1. AOPA Air Safety Foundation, "Aircraft icing", AOPA Air Safety Foundation, 2002.
  2. Olsen, W., and Walker, E., "Experimental Evidence for Modifying the Current Physical Model for Ice Accretion on Aircraft Surfaces," NASA TM 87184, May 1986.
  3. Hansman, R. J., and Turnock, S. R., "Investigation of Surface Water Behavior During Glaze Ice Accretion," Journal of Aircraft, Vol. 25, No. 2, 1989, pp.140-147.
  4. Shin, J., "Characteristics of Surface Roughness Associated with Leading Edge Ice Accretion," NASA TM-106459, Jan 1994.
  5. Fortin, G., Laforte, J. L., and Ilinca, A., "Heat and Mass Transfer during Ice Accretion on Aircraft Wings with an Improved Roughness Model", International Journal of Thermal Sciences, Vol. 45, Issue. 6, 2006, pp. 595-606. https://doi.org/10.1016/j.ijthermalsci.2005.07.006
  6. Georgakis, C. T., Koss, H. H., and Ricciardelli, F., "Design Specifications for a Novel Climatic Wind Tunnel for the Testing of Structural Cables," 8th International symposium on cable dynamics, Paris, Sept., 2009, pp. 333-340.
  7. Wright, W. B., Rutkowski, A., "Validation Results for LEWICE 2.0," NASA/CR-1999-208690, 1999.
  8. Koss, H. H., Gjelstrup, H., and Georgakis, C. T., "Experimental Study of Ice Accretion on Circular Cylinders at Moderate Low Temperatures," Journal of Wind Engineering and Industrial Aerodynamics, Vol. 104, 2012, pp. 540-546.
  9. Ruff, G. A., and Berkowitz, B. M., "Users Manual for the NASA Lewis Ice Accretion Prediction Code(LEWICE)," NASA/CR-185129, May, 1990.
  10. Lee, S., Broeren, A., Addy, H., Sills, R., and Pifer, E., "Development of 3D Ice Accretion Measurement Method," 4th AIAA Atmospheric and Space Environments Conference, 25-28, New Orleans, June, 2012 p. 2938.
  11. Son, C., and Yee, K., "Procedure for Determining Operation Limits of High-Altitude Long-Endurance Aircraft Under Icing Conditions," Journal of Aircraft, Vol. 55, No. 1, 2018, pp. 294-309. https://doi.org/10.2514/1.C034490