• Title/Summary/Keyword: micro chip

Search Result 530, Processing Time 0.026 seconds

Development of Real-Time TCP/COF Inspection System using Differential Image (차영상을 이용한 실시간 TCP/COF 검사 시스템 개발)

  • Lee, Sang-Won;Choi, Hwan-Yong;Lee, Dae-Jong;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.1
    • /
    • pp.87-93
    • /
    • 2012
  • In this paper, we proposed a faulty pattern detection algorithm of TCP(Tape Carrier Package)/COF(Chip On Film), and implemented a real-time system for inspecting TCP/COF. Since TCP/COF has very high resolution having several micro meters, the human operator should visually inspect all the parts through microscope. In this work, we implement an inspection system to detect the faulty pattern, so the operator can visually inspect only the designated parts by the inspection system through the monitor. The proposed defects detection algorithm for TCP/COF packages is implemented by the pattern matching method based on subtracting the reference image from test image. To evaluate performance of the proposal system. we made various experiments according to type of CCD camera and light source as well as illumination projection method. From experimental results, it is confirmed that the proposed system makes it possible to detect effectively the defective TCP/COF film.

A Novel Spiral Type MEMS Power Generator with Shear Mode Piezoelectric Thick Film (압전 후막의 전단 변형을 이용한 나선형 MEMS 발전기)

  • Song, Hyun-Cheol;Kim, Sang-Jong;Moon, Hi-Gyu;Kang, Chong-Yun;Yoon, Seok-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.219-219
    • /
    • 2008
  • Energy harvesting from the environment has been of great interest as a standalone power source of wireless sensor nodes for ubiquitous sensor networks (USN). There are several power generating methods such as thermal gradients, solar cell, energy produced by human action, mechanical vibration energy, and so on. Most of all, mechanical vibration is easily accessible and has no limitation of weather and environment of outdoor or indoor. In particular, the piezoelectric energy harvesting from ambient vibration sources has attracted attention because it has a relative high power density comparing with other energy scavenging methods. Through recent advances in low power consumption RF transmitters and sensors, it is possible to adopt a micro-power energy harvesting system realized by MEMS technology for the system-on-chip. However, the MEMS energy harvesting system hassome drawbacks such as a high natural frequency over 300 Hz and a small power generation due to a small dimension. To overcome these limitations, we devised a novel power generator with a spiral spring structure. In this case, the energy harvester has a lower natural frequency under 200 Hz than a normal cantilever structure. Moreover, it has higher an energy conversion efficient because shear mode ($d_{15}$) is much larger than 33 mode ($d_{33}$) and the energy conversion efficiency is proportional to the piezoelectric constant (d). We expect the spiral type MEMS power generator would be a good candidate as a standalone power generator for USN.

  • PDF

FPGA Modem Platform Design for eHSPA and Its Regularized Verification Methodology (eHSPA 규격을 만족하는 FPGA모뎀 플랫폼 설계 및 검증기법)

  • Kwon, Hyun-Il;Kim, Kyung-Ho;Lee, Chung-Yong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.2
    • /
    • pp.24-30
    • /
    • 2009
  • In this paper, the FPGA modem platform complying with 3GPP Release 7 eHSPA specifications and its regularized verification flow are proposed. The FFGA platform consists of modem board supporting physical layer requirements, MCU and DSP core embedded control board to drive the modem board, and peripheral boards for RF interfacing and various equipment interfaces. On the other hand, the proposed verification flow has been regularized into three categories according to the correlation degrees of hardware-software inter-operation, such as simple function test, scenario test call processing and system-level performance test. When it comes to real implementations, the emulation verification strategy for low power mobile SoC is also introduced.

Physical Properties of Environment-friendly Insulating Composite Materials Using Natural Cellulose as a Core Material (천연섬유질을 심재로 사용한 친환경 복합단열재의 물성)

  • Hwang, Eui-Hwan;Cho, Soung-Jun;Kim, Jin-Man
    • Korean Chemical Engineering Research
    • /
    • v.49 no.1
    • /
    • pp.120-127
    • /
    • 2011
  • For the development of the environment-friendly insulating composite materials, natural cellulose (wood chip and sawdust) was used as a core material and activated Hwangtoh was used as a binder. Various specimens were prepared with the water/binder ratio and natural cellulose/binder ratio. The physical properties of these specimens were then investigated through compressive and flexural strength test, absorption test, hot water resistance test, thermal conductivity, measurement of pore distribution and observation of micro-structures using scanning electron microscope (SEM). Results showed that the absorption ratio increased with the increase of natural cellulose/binder ratio but decreased remarkably with the increase of polymer/binder ratio. The compressive and flexural strength development varied appreciably with the increase of water/binder ratio and natural cellulose/binder ratio. On the other hand, thermal conductivity decreased with the increase of natural cellulose/binder ratio and polymer/binder ratio. Through SEM, it was found that activated Hwangtoh that reacted with water formed a hydrate crystal leading to the compact structure and the total pore volume of the specimen using activated Hwangtoh was smaller than that of the non-activated Hwangtoh.

Cutting Force Prediction in Single Point Diamond Turning (정밀 선삭 가공 과정의 절삭력 예측모델)

  • 윤영식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1456-1464
    • /
    • 1993
  • The achievable machining accuracy depends upon the level of the micro-engineering, and the dimensional tolerances in the order of 10 nm and surface roughness in the order of 1 nm are the accuracy targets to achieved today. Such requirements cannot be satisfied by the conventional machining processes. Single point diamond turning is one of the new techniques which can produce the parts with such accuracy limits. The aims of this thesis are to get a better understanding of the complex cutting forces. A cutting model for describing the influence of cutting conditions (cutting speed, feedrate and depth of cut), material properties of the workpiece and tool geometry has been proposed after estimating the two cutting force models-the Recht model and the Dautzenberg model. The experiments with Al-alloy workpieces, which have been carried out in order to estimate the models, show that the proposed model in this thesis is better than the two models. As the depth of cut and feedrate are increased in the operations settings (depth of cut 8-100$\mu{m}$, feedrate 8-140$\mu{m}$/rev, and cutting speed 8 m/sec), the relation of dimensionless cutting forces from experiments are similar to the proposed model. With the undeformed chip area of $30-80{\times}10^{2}$\mu{m}^2$, the experimental cutting forces accord with the force prediction.

A Numerical Study on the Natural Convection from Two Isothermal Square Beams Attached to an Vertical Adiabatic Plate (수직단열판에 부착된 2개의 등온 사각비임에서의 자연대류 열전달에 관한 수치 해석)

  • Park, Jae-Lim;Bae, Dae-Sok;Kwon, Sun-Sok
    • Solar Energy
    • /
    • v.11 no.2
    • /
    • pp.63-69
    • /
    • 1991
  • A Steady laminar natural convection heat transfer from two isothermal square beams attached to a vertical adiabatic plate has been studied numerically. The results have been obtained for dimensionless beam spacings, $0.5{\le}D/L{\le}3.0$, and for Gr=5000-10000 at ${\phi}_2/{\phi}_1=1.0$. 1. The local Nusselt number from the beam surface is increased with the dimension-less beam spacing D/L. but that of the downward surface of the lower beam is almost same as the D/L increases. And, the local Nusselt number from the upward surface of a lower beam is greatly increased with D/L. 2. The beam spacings of the maximum mean Nusselt number for the downward surface of an upper beam and the upward surface of a lower beam occur at. D/L =2.6 and 2.0 respectively. 3. The beam spacing for the maximum total mean Nusselt number occurs at D/L = 2.6.

  • PDF

Development of an Injection Molded Disposable Chaotic Micromixer: Serpentine Laminating Micromixer (I) - Design and Numerical Analysis - (사출 성형된 일회용 카오스 마이크로 믹서의 개발: 나선형 라미네이션 마이크로 믹서 (I) - 디자인 및 수치 해석 -)

  • Kim Dong Sung;Lee Se Hwan;Kwon Tai Hun;Ahn Chong H.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.10 s.241
    • /
    • pp.1289-1297
    • /
    • 2005
  • The flow in a microchannel is usually characterized as a low Reynolds number (Re) so that good mixing is quite difficult to be achieved. In this regard, we developed a novel chaotic micromixer, named Serpentine Laminating Micromixer (SLM) in the present study, Part 1. In the SLM, the higher level of chaotic mixing can be achieved by combining two general chaotic mixing mechanisms: splitting/recombination and chaotic advection. The splitting and recombination (in other term, lamination) mechanism is obtained by the successive arrangement of 'F'-shape mixing units in two layers. The chaotic advection is induced by the overall three-dimensional serpentine path of the microchannel. Chaotic mixing performance of the SLM was fully characterized numerically. To compare the mixing performance, a T-type micromixer which has the same width, height and length of the SLM was also designed. The three-dimensional numerical mixing simulations show the superiority of the SLM over the T-type micromixer. From the cross-sectional simulation results of mixing patterns, the chaotic advection effect from the serpentine channel path design acts favorably to realize the ideal lamination of fluid flow as Re increases. Chaotic mixing mechanism, proposed in this study, could be easily integrated in Micro-Total-Analysis-System, Lab-on-a-Chip and so on.

Development of an Injection Molded Disposable Chaotic Micromixer: Serpentine Laminating Micromixer (II) - Fabrication and Mixing Experiment - (사출 성형된 일회용 카오스 마이크로 믹서의 개발: 나선형 라미네이션 마이크로 믹서 (II) - 제작 및 혼합 실험 -)

  • Kim Dong Sung;Lee Se Hwan;Kwon Tai Hun;Ahn Chong H.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.10 s.241
    • /
    • pp.1298-1306
    • /
    • 2005
  • In this paper, Part II, we realized the Serpentine Laminating Micromirer (SLM) which was proposed in the accompanying paper, Part I, by means of the injection molding process in mass production. In the SLM, the higher level of chaotic mixing can be achieved by combining two general chaotic mixing mechanisms of splitting/recombination and chaotic advection by the successive arrangement of 'F'-shape mixing units in two layers. Mold inserts for the injection molding process of the SLM were fabricated by SU-8 photolithography and nickel electroplating. The SLM was realized by injection molding of COC (cyclic olefin copolymer) with the fabricated mold inserts and thermal bonding of two injection molded COC substrates. To compare the mixing performance, a T-type micromixer was also fabricated. Mixing performances of micromixers were experimentally characterized in terms of an average mixing color intensity of a pH indicator, phenolphthalein. Experimental results show that the SLM has much better mixing performance than the I-type micromixer and chaotic mixing was successfully achieved from the SLM over the wide range of Reynolds number (Re). The chaotic micromixer, SLM proposed in this study, could be easily integrated in Micro-Total-Analysis- System , Lab-on-a-Chip and so on.

A NOVEL SPIRAL TYPE MEMS POWER GENERATOR WITH SHEAR MODE

  • Song, Hyun-Cheol;Kang, Chong-Yun;Yoon, Seok-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03a
    • /
    • pp.7-7
    • /
    • 2010
  • Energy harvesting from the environment has been of great interest as a standalone power source of wireless sensor nodes for Ubiquitous Sensor Networks(USN). In particular, the piezoelectric energy harvesting from ambient vibration sources has intensively researched because it has a relatively high power density comparing with other energy scavenging methods. Through recent advances in low power consumption RF transmitters and sensors, it is possible to adopt a micro-power energy harvesting system realized by MEMS technology for the system-on-chip. However, the MEMS energy harvesting system has some drawbacks such as a high natural frequency over 300 Hz and a small power generation due to a small dimension. To overcome these limitations, we devised a novel power generator with a spiral spring structure as shown in the figure. The natural frequency of a cantilever could be decreased to the usable frequency region (under 300 Hz) because the natural frequency depends on the length of a cantilever. In this study, the natural frequency of the energy harvester was a lower than a normal cantilever structure and sufficiently controllable in 50 - 200 Hz frequency region as adjusting weight of a proof mass. Moreover, the MEMS energy harvester had a high energy conversion efficiency using a shear mode ($d_{15}$) is much larger than a 33 mode ($d_{33}$) and the energy conversion efficiency is proportional to the piezoelectric constant (d). We expect the spiral type MEMS power generator would be a good candidate for a standalone power generator for USN.

  • PDF

A Study on the Development of Digital Output Load Cell (계량설비용 디지탈 출력 로드셀의 개발에 관한 연구)

  • Park, Chan-Won;An, Kwang-Hee
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.11 no.1
    • /
    • pp.114-122
    • /
    • 1997
  • This paper describes the design and development of a smart digital load cell used forweighing installations. Sice the load cell sensor to be used is very sensitive for weight cariation, the load cell must have the temperature stability, low-drift and the high-resolution of the A/D conversion for accuracy. A new analog circuit which is controlled by one chip micro-processer has been developed to reduce the offset voltage and the drift characteristics of operational amplifiers, and has been adapted into the digital load cell. Also, a software algorithm has been developed to obtain the stable and accurate A/D conversion. This software includes a RS-485 communication program to control the digital load cell, which gives a capability of backing-up the calibration data and transferring control data. The simulation and evaluation of the designed digital load cell has been shown as having the good performance. which will give useful application to the weighing installations as a remote weighing sensor.

  • PDF