• 제목/요약/키워드: micro channel machining

검색결과 45건 처리시간 0.023초

Pentacene Thin Film Transistors Fabricated by High-aspect Ratio Metal Shadow Mask

  • Jin, Sung-Hun;Jung, Keum-Dong;Shin, Hyung-Chul;Park, Byung-Gook;Lee, Jong-Duk;Yi, Sang-Min;Chu, Chong-Nam
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.881-884
    • /
    • 2004
  • The robust and large-area applicable metal shadow masks with a high aspect ratio more than 20 are fabricated by a combination of micro-electro-discharge machining (${\mu}$-EDM) and electro chemical etching (ECE). After defining S/D contacts using a 100 ${\mu}m$ thick stainless steel shadow mask, the top-contact pentacene TFTs with channel length of 5 ${\mu}m$ showed routinely the results of mobility of 0.498 ${\pm}$ 0.05 $cm^2$/Vsec, current on/off ratio of 1.6 ${times}$ $10^5$, and threshold voltage of 0 V. The straightly defined atomic force microscopy (AFM) images of channel area demonstrated that shadow effects caused by the S/D electrode deposition were negligible. The fabricated pentacene TFTs have an average channel length of 5 ${\pm}$ 0.25 ${\mu}m$.

  • PDF

레이저를 이용한 트렌치 제작 및 응용 연구 (Laser microstructuring of trench and its application to optical waveguide)

  • 최훈국;유동윤;손익부;노영철;김영식;김수용;김완춘;김진봉
    • 한국레이저가공학회지
    • /
    • 제18권1호
    • /
    • pp.7-11
    • /
    • 2015
  • In this paper, micro trench structure is fabricated by femtosecond laser for inserting optical reflecting wavelength filter in planar waveguide. The width and depth of the trench is controlled by femtosecond laser machining condition. Also, large scale of single channel with 500um and 1000um on silica plate is fabricated by femtosecond laser, and roughness of the channel surface is polished by $CO_2$ laser for the insertion of the filter. Then, the characteristic of the planar waveguide inserted the filter is verified.

소형공작기계를 이용한 광커넥터용 V 홈 가공에 관한 연구 (A Study on Machining of A V-groove on the Optical Fiber Connector Using a Miniaturized Machine Tool)

  • 이재하;박성령;양승한;이영문
    • 한국정밀공학회지
    • /
    • 제21권5호
    • /
    • pp.38-45
    • /
    • 2004
  • As optical communication is being substituted for telecommunication, the demand of a large variety of fiber optic components is increasing. V-groove substrates, one of the module components, are used to connect optical fibers to optical planar circuits and to arrange fibers. Their applications are multi-channel optical connectors and optical waveguide fiber coupling, etc. Because these substrates are a critical part of the splitter in a multiplexer and a multi fiber connector, precise and reliable fabrication process is required. For precisely aligning core pitch between fibers, machined core pitch tolerance should be within sub-microns. Therefore, these are generally produced by state-of-the-art micro-fabrication like MEMS. However, most of the process equipment is very expensive. It is also difficult to change the process line for custom designs to meet specific requirements using various materials. For various design specifications such as different values of the V angle and low-priced process, the fabrication method should be flexible and low cost. To achieve this goal, we have suggested a miniaturized machine tool with high accuracy positioning system. Through this study, it is shown that this cutting process can be applied to produce V-groove subtracts. We also show the possibility of using a miniaturized machining system for producing small parts.

나노/마이크로 PDMS 채널 제작을 위한 마스크리스 실리콘 스템퍼 제작 및 레오로지 성형으로의 응용 (Maskless Fabrication of the Silicon Stamper for PDMS Nano/Micro Channel)

  • 윤성원;강충길
    • 소성∙가공
    • /
    • 제13권4호
    • /
    • pp.326-333
    • /
    • 2004
  • The nanoprobe based on lithography, mainly represented by SPM based technologies, has been recognized as a potential application to fabricate the surface nanosctructures because of its operational versatility and simplicity. However, nanoprobe based on lithography itself is not suitable for mass production because it is time a consuming method and not economical for commercial applications. One solution is to fabricate a mold that will be used for mass production processes such as nanoimprint, PDMS casting, and others. The objective of this study is to fabricate the silicon stamper for PDMS casting process by a mastless fabrication technique using the combination of nano/micro machining by Nanoindenter XP and KOH wet etching. Effect of the Berkovich tip alignment on the deformation was investigated. Grooves were machined on a silicon surface, which has native oxide on it, by constant load scratch (CLS), and they were etched in KOH solutions to investigate chemical characteristics of the machined silicon surface. After the etching process, the convex structures was made because of the etch mask effect of the mechanically affected layer generated by nanoscratch. On the basis of this fact, some line patterns with convex structures were fabricated. Achieved groove and convex structures were used as a stamper for PDMS casting process.

기계화학적 극미세 가공기술을 이용한 PDMS 복제몰딩 공정용 서브마이크로 몰드 제작에 관한 연구 (A Study on the Fabrication of Sub-Micro Mold for PDMS Replica Molding Process by Using Hyperfine Mechanochemical Machining Technique)

  • 윤성원;강충길
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.351-354
    • /
    • 2004
  • This work presents a simple and cost-effective approach for maskless fabrication of positive-tone silicon master for the replica molding of hyperfine elastomeric channel. Positive-tone silicon masters were fabricated by a maskless fabrication technique using the combination of nanoscratch by Nanoindenter ⓡ XP and XOH wet etching. Grooves were machined on a silicon surface coated with native oxide by ductile-regime nanoscratch, and they were etched in a 20 wt% KOH solution. After the KOH etching process, positive-tone structures resulted because of the etch-mask effect of the amorphous oxide layer generated by nanoscratch. The size and shape of the positive-tone structures were controlled by varying the etching time (5, 15, 18, 20, 25, 30 min) and the normal loads (1, 5 mN) during nanoscratch. Moreover, the effects of the Berkovich tip alignment (0, 45$^{\circ}$) on the deformation behavior and etching characteristic of silicon material were investigated.

  • PDF