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Abstract

The robust and large-area applicable
metal shadow masks with a high aspect ratio
more than 20 are fabricated by a combination of
micro-electro-discharge machining (u-EDM)
and electro chemical etching (ECE). After
defining S/D contacts using a 100 pum thick
stainless steel shadow mask, the top-contact
pentacene TFTs with channel length of 5 um
showed routinely the results of mobility of 0.498
#+ 0.05 cm’/Vsec, current on/off ratio of 1.6 %
10°, and threshold voltage of 0 V. The straightly
defined atomic force microscopy (AFM) images
of channel area demonstrated that shadow
effects caused by the S/D electrode deposition
were negligible. The fabricated pentacene TFTs
have an average channel length of 5 +0.25 um.
1. Introduction |

Among various organic semiconductors,
pentacene continues to be an attractive material
choice because of its high mobility on the order
of 1 cm?/Vsec for a variety of electronic
applications, including information display [1-3],
electronic paper [4], and radio frequency
identification (RFID) [5].

Even though pentacene thin film
transistors (TFTs) can be implemented in one of
two configurations, i.e., top contact and bottom
contact [6], the best performances of pentacene
TFTs in the literature [7,8] have been always
demonstrated in the top contact configuration
due to the inherently favorable conditions of
pentacene growth compared with bottom contact
mode {6]. However, the top contact mode is
incompatible with the conventional photolitho-
graphy for the definition of source and drain
(S/D) electrodes on organic semiconductor due
to their intolerance to the exposure of solven-
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FIG 1. Schematic configurations for (a) micro-
electro-discharge machining (n-EDM) and (b)
electro-chemical etching (ECE). The aspect ratio
(AR) of an HR shadow mask denotes the ratio of
the thickness of workpiece (Ts) to the length of a
bridge (Lc). After p-EDM processing up to the
channel length of 10 um, the work piece
consecutively was electro chemically etched
with an etch rate of 4.4 A/sec in 0.1 mole H>SO,
solution (¢) A SEM image for a stainless steel
shadow mask right after ui-EDM process. After
n-EDM process, L¢ 1s 10 um with an aspect
ratio of 10 (d) A SEM image for a metal shadow
mask right after u.-EDM and ECE process. L¢ 1s
3.6 um with an aspect ratio of 28. The width of
bridge (W¢) 1s 150 pm.

ts and other liquids [9].

Therefore metal shadow masks are
generally used to define the top S/D contacts on
organic materials because they can guarantee
simple S/D definition process without damage of
organic materials. But the S/D patterning
process by the conventional metal shadow
masks (L¢~ 20 ~70 um) [6], [9] has two major
obstacles, which are high resolution patterning
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[10] and mass manufacturability. While
commercial products like OELD eliminate
gradually the pessimistic prospect for the
applications of a metal shadow mask to mass
production [11], the high resolution patterning
using shadow masks can be a remaining barrier
on highly integrated top-contact OTFTs [8]. To
achieve top-contact OTFTs with a high areal
density, several approaches including cold
welding [12], high resolution rubber stamping
[13] and special Si membrane masks [14] have
been reported in the literature, whereas each
method has fundamental drawbacks of too much
complicated implementation [12], low-level ma-
nufacurability for large area applications [13],
and easy brittleness [14].

In this work, we proposed and imple-
mented metal shadow masks with a high aspect
ratio (AR >20) based on a combination of
anisotropic micro-electro-discharge machining
(L-EDM) [15] and isotropic electro chemical
etching (ECE) for the application of OTFTs
scaled down less than 5 um. The high-aspect
ratio (HR) metal shadow masks have inherent
merits of structural robustness, simple S/D
patterning process, and re-usage. In addition, a
batch mode p-EDM technique can be fun-
damentally applicable to metal shadow masks of
a high throughput and good uniformity for a
large area application [17].

2. Experiments and Resnlts

Figure 1 presents a schematic illustration
of (a) w-EDM [15] and (b) ECE [16], which
were used to fabricate metal shadow masks with
high AR larger than 20. As shown in Fig. 1(a),
an AR for a metal shadow mask is defined as the
thickness of a shadow mask (Ts) to the length of
a bridge (L¢). In this experiment, p-EDM system
used the applied voltage of 100 V, a single RC
pulse timing circuits with 500 pF and 1 K, and
a square copper electrode with one side length of
130 pm and structural height of 1500 um
fabricated by wire electrode discharge gliding
(WEDG)[18]. The work pieces for shadow
masks are 100 = 5 um thick stainless steel (304
SS) with the size of 1.5 ecm x 1.5 cm. After
serially machining 150 pum square contact holes
using u-EDM, the combinational process of
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FIG. 2. (a) Schematic illustration of process
steps for pentacene TFTs fabricated using an HR
metal shadow mask. The width of the wall (L)
for metal shadow masks ranges from 20 um to 5
um with a fixed channel width of 150 um. (b)
SEM image of pentacene TFTs with a channel
length of 5 um after measurement of electrical
characteristics and AFM image of the channel
area of a pentacene TFT.

ECE improves the AR of a metal shadow mask
noticeably because the p-EDM has a funda-
mental limit of the routinely machinable feature
size (Lc~ 10 um) as shown in Fig. 1(c). Figure
1(b) shows that process conditions of ECE
system are the applied voltage of 1.2 V and the
0.1 mole H,SO, solution as electrolyte. Figure 1
(c) and (d) showed SEM images for a metal
shadow mask after u-EDM and ECE steps,
respectively. To date, the length (L¢) and width
(W¢) of the bridge can be routinely obtained as



small as 5 + 025 um and 70 = 1 pum,
respectively. .

Figure 2(a) shows a schematic for the
fabrication steps of pentacene TFTs. For a gate
insulator, 35 nm thick thermal oxide was grown
on a p-type wafer with the resistivity of 15 Qcm.
The thermal oxide was patterned by photo-
lithography, and then etched by dilute HF
solution for a gate electrode deposition. After
cutting the patterned Si wafer to the size of 2 cm
X 2 cm, each sample was spin-coated with a
dilute PMMA solution to improve the ordering
of pentacene due to the hydrophobic ending
group methyl radical (-CH;) [19]. The coated
PMMA thickness was 10 nm as measured by
ellipsometery. A 50 nm thick pentacene was
thermally evaporated on the PMMA treated gate
oxide at a rate of about 0.3 A/sec. During the
deposition, the substrate temperature maintained
at the temperature of 90 °C in the pressure of
8x10® torr. Pentacene was purchased from
Aldrich Company, and its purity was about 98 %
based on a CHN (carbon, hydrogen, and
nitrogen) elemental test. The pentacene source in
this experiment was used without purification.
Finally 50 nm of gold was e-beam evaporated on
pentacene active layer through a 100 pum thick
HR shadow mask to define S/D contacts as well
as the gate contacts. The dimension of source
and drain contacts have the channel length
ranging from 20 um to 5 pm at a fixed channel
width of 150 um. Figure 2 (b) shows the AFM
and SEM image of channel area for an OTFT
with We=150 um and Lc=5 pm. As shown in
Fig. 2 (b), the defined source and drain contacts
have a good straight channel.

Figure 3 shows that electrical transfer and
output characteristics of pentacene TFTs
fabricated by an HR shadow mask with the L of
5 ym and W¢ of 150 um. From the transfer
characteristics as shown in Fig. 3(a), a saturation
mobility of 0.498 + 0.05 cm’/Vsec, a current
on/off ratio of 1.6 x 10°, a subthreshold swing
(SS) of 2.5V/dec, and a threshold voltage of 0 V
are extracted. The comparatively low level of
current on/off ratio and SS are attributed to the
periphery areas of pentacene layer, whereas the
electrical performances can be improved by
removing periphery areas of pentacene [20]. As
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Fig 3. (a) Transfer and (b) output characteristics
of a pentacene TFT with the ratio of W/L=150

um/S pm

shown in Fig. 3(b), a pentacene TFT has the nice
saturation characteristics and the saturation
current of 100 pA at the voltage of Vpg = Vgs= -
20V.

3. Conclusion

We have proposed metal shadow masks
with a high aspect ratio (AR > 20) using p-EDM
and ECE for high definition of S/D contacts (L <
5 um and W < 150 um) on organic semi-
conductors. The fabricated pentacene TFTs with
the channel length of about 5 pm showed
routinely mobility of 0.498 #0.05 cm’/Vsec and
current on/off ratio of 1.6 x 10°. The HR metal
shadow masks with high aspect ratio more than
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20 can be used repeatedly for S/D electrodes
deposition due to the structural robustness. The
pentacene TFTs by HR shadow masks can meet
the required OELD pixel resolution (< 100 x
100 pm’) as well as high current drivability
through the scaling-down of the width of OTFTs
[11]. In addition, a batch mode u-EDM can
potentially solve a throughput and yield problem
of HR metal shadow mask generation.
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