• Title/Summary/Keyword: micro actuator

Search Result 413, Processing Time 0.021 seconds

Intelligent Force Control of a Flip Chip Mounting System

  • Shim, Jae Hong;Cho, Young Im
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.3
    • /
    • pp.316-321
    • /
    • 2004
  • In this paper, we have developed a new mounting head system for flip chip. The proposed head system consists of a macro/micro positioning actuator for stable force control. The macro actuator provides the system with a gross motion while the micro device yields fine tuned motion to reduce the harmful impact force that occurs between very small sized electronic parts and the surface of a PCB(printed circuit board). In order to show the effectiveness of the proposed macro/micro chip mounting system, we compared the proposed system with the conventional chip mounting head equipped with a macro actuator only. A series of experiments were executed under the mounting conditions such as various access velocities and PCB stiffness. As a result of this study, a satisfactory voice coil actuator as the micro actuator has been developed, and its performance meet well the specifications desired for the design of the chip mounting head system and show good correspondence between theoretical analysis and experimental results.

FEA Simulation for Practical Behaviors of Electrostatic Micro Actuator (마이크로 액추에이터의 실제 거동에 대한 FEA 시뮬레이션)

  • Lee Yang Chang;Lee Joon Seong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.1
    • /
    • pp.115-121
    • /
    • 2005
  • Micromachines are extremely novel artifacts with a variety of special characteristics. Utilizing their tiny dimensions ranging roughly from 10 to $10^3$ micro-meters, the micromachines can perform tasks in a revolutionary manner that would be impossible for conventional artifacts. Micromachines are in general related to various coupled physical phenomena. They are required to be evaluated and designed considering the coupled phenomena. This paper describes finite element analysis (FEA) simulation of practical behaviors for the micro actuator. Especially, electric field modeling in micro actuators has been generally restricted to in-plane two-dimensional finite element analysis because of the complexity of the micro actuator geometry. However, in this paper, the actual three-dimensional geometry of the micro actuator is considered. The starting torque obtained from the in-plane two-dimensional analytical solutions were compared with that of the actual three-dimensional FE analysis results. The starting torque is proportional to $V^2$, and that the two-dimensional analytical solutions are larger than the three- dimensional FE ones. It is found that the evaluation of micro actuator has to be considered electrical leakage phenomenon.

FEA Simulation for Performance Estimation of Micro Actuator (마이크로 액추에이터의 성능평가를 위한 FEA 시뮬레이션)

  • 이양창;이준성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.1045-1048
    • /
    • 2002
  • Micromachines are extremely novel artifacts with a variety of special characteristics. Utilizing their tiny dimensions ranging roughly from 10 to $1O^3$ micro-meters, the micromachines can perform tasks in a revolutionary manner that would be impossible for conventional artifacts. Micromachines are in general related to various coupled physical phenomena. They are required to be evaluated and designed considering the coupled phenomena. This paper describes finite element analysis (FEA) simulation of practical behaviors for the micro actuator. Especially, electric field modeling in micro actuators has been generally restricted to in-plane two-dimensional finite element analysis because of the complexity of the micro actuator geometry. However, in this thesis, the actual three-dimensional geometry of the micro actuator is considered. The starting torque obtained from the in-plane two-dimensional analytical solutions were compared with that of the actual three-dimensional FE analysis results. The starting torque is proportional to $V^2$, and that the two-dimensional analytical solutions are larger than the three-dimensional FE ones. It is found that the evaluation of micro actuator has to be considered electrical leakage phenomenon.

  • PDF

Optimal Design of Micro Actuator Plate Spring Considering Vibration Characteristic (진동 특성을 고려한 마이크로 엑추에이터 판 스프링의 최적설계)

  • 이종진;이호철;유정훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.220-225
    • /
    • 2003
  • Recent issue of optical actuator is applying to mobile device. It leads actuator to become smaller than conventional type. This paper proposes the design of micro actuator plate spring and analysis of its vibration characteristic. Considering natural frequency of spindle motor, 1st and 2nd eigenfrequency of micro actuator must avoid its natural frequency. First, magnetic circuit is designed by using fine pattern coil and magnetic force is acquired by simulation program. Then, concept design is achieved by topology optimization. From concept design, micro actuator plate spring is embodied through DOE(design of experiment). Finally, considering vibration characteristic simultaneously, optimal plate spring design is determined by RSM(response surface method).

  • PDF

Robust motion control of a flexible micro-actuator using $H_{\infty}$ control method

  • Okugawa, Masayuki;Sasaki, Minoru;Fujisawa, Fumio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.397-400
    • /
    • 1996
  • In this paper, robust motion control of a flexible micro-actuator is presented. The actuator is made of a bimorph piezoelectric high-polymer material (PVDF). No mathematical model system can exactly model a physical system such a flexible micro-actuator. For this reason we must be aware of how modeling errors might adversely affect the performance of a control system for such a model. The H method addresses a wide range of the control problems, combining the frequency and time domain approaches. The design is an optimal one in the sense of minimization of the maximum of the closed-loop transfer function. It includes colored measurement and process noise. It also addresses the issues of robustness due to model uncertainties, and is applicable to the, flexible micro-actuator control problem. Therefore, we adopt the H control problem to the robust motion control of the flexible micro-actuator. Theoretical and experimental results demonstrate the satisfactory performance and the effectiveness of the designed controller. the effectiveness of the designed controller.

  • PDF

Development and Analysis for Micro Actuator Using Buckling Membrane and Phase Change (좌굴과 상변화를 이용한 Micro Actuator의 개발 및 해석)

  • Song, Kwi-Eun;Kim, Jeong-Sik;Kim, Kwang-Ho;Lee, Yoon-Pyol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.6
    • /
    • pp.638-645
    • /
    • 2004
  • A new micro actuation concept is introduced and studied in this paper. This idea is based on the thermo-pneumatic actuation principle. In order to improve the performance of a conventional thermo-pneumatic actuator, the idea of bistable buckling is added. By using a membrane which has the bistable buckling characteristics, the working pressure difference can be increased and as a result the work output can be increased. The analysis model for each phenomenon, bistable buckling and phase change, are suggested and the each model is verified with experimental data. From the comparison of the theoretical prediction with the experimental results, it can be concluded that these models are useful for such micro actuator analysis.

Heat Transfer in a Micro-actuator Operated by Radiometric Phenomena

  • Heo Joong-Sik;Hwang Young-Kyu
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.664-673
    • /
    • 2005
  • The heat transfer characteristics of rarefied flows in a micro-actuator are studied numerically. The effect of Knudsen number (Kn) on the heat transfer of the micro-actuator flows is also examined. The Kn based on gas density and characteristic dimension is varied from near-continuum to highly rarefied conditions. Direct simulation Monte Carlo calculations have been performed to estimate the performance of the micro-actuator. The results show that the magnitude of the temperature jump at the wall increases with Kn. Also, the heat transfer to the isothermal wall is found to increase significantly with Kn.

Analysis on Phase-Change Based Micro-actuator (상변화를 이용한 Micro-actuator에 대한 해석)

  • Chung, Jae-Dong;Kaviany, M.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.108-112
    • /
    • 2000
  • This paper presents a mathematical model and simulation of the micro-actuator based on thermally induced liquid-vapor phase-change in a partially-filled closed cavity. The volume expansion by liquid-vapor Phase change can generate considerable forces and displacement $({\sim}50{\mu}m)$ required for commercial use. For optimum operation involving many cycles within the closed chamber, active(thermoelectric) heating and cooling is used. The optimization of the system is conducted according to the parameters such as input power and response time. The optimized performance of micro-actuator is reasonable compared to other actuators.

  • PDF

Thermo-pneumatic Micro Actuator with Bi-stable Membrane (좌굴과 상변화를 이용한 micro actuator 의 개발 및 해석)

  • Song, Gwi-Eun;Kim, Jeong-Sik;Kim, Kwang-Ho;Lee, Yoon-Pyo
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.233-238
    • /
    • 2003
  • A brand-new micro actuator is introduced in this paper. This device is one of thermo-pneumatic actuators, and based on two distinct principles of snap-through buckling and phase change. These coupled phenomena affect each other positively and will outrun the performance of an ordinary thermo-pneumatic actuator. Our efforts are focused on comprehensive analysis on the driving force of the actuator. For the analysis, we explain each principle and offer approximated models for the buckling and phase change. The calculation results from each model are compared to experimental data. The comparison between prediction from models and data from experiments is within the satisfaction in spite of a lot of approximations.

  • PDF

Development of Micro-bellows Actuator Using Micro-stereolithography Technology (마이크로 광 조형 기술을 이용한 마이크로 밸로우즈 액추에이터의 개발)

  • Kang H.W.;Lee I.H.;Cho D.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.615-618
    • /
    • 2005
  • All over the world, many kinds of micro-actuators were already developed for various applications. The actuators are using various principles such as electromagnetic, piezoelectric and thermopneumatic etc. The most of the micro-actuators have been made using 2D based MEMS technology. In these actuators, it is difficult to drive 3-dimensional motion. This characteristic gives the limit of actuator application. However, micro-stereolithography technology has made it possible to fabricate freeform three-dimensional microstructures. In this technology, 2-dimensional micro-shape layer is cumulated on the other layers. This layer-by-layer process is the main principle to fabricate 3-dimensioal micro-structures. In this research, a micro-bellows actuator that is vertically moving was developed using the micro-stereolithography technology. When pressure was applied into the bellows, a non-contact actuating motion is generated. For actuation experiment, syringe pump and laser interferometer were used for applying pressure and measuring the displacement. Several hundreds micro-scale actuation was observed. And, to demonstrate the feasibility of proposed actuation principle, in this research, a micro-gripper was developed using half-bellows structure.

  • PDF