• Title/Summary/Keyword: micro/nano adhesion

Search Result 66, Processing Time 0.027 seconds

Micro/Nano Adhesion and Friction Properties of Mixed Self-assembled Monolayer (혼합 자기 조립 단분자막의 마이크로/나노 응착 및 마찰 특성)

  • Yoon Eui-Sung;Oh Hyun-Jin;Han Hung-Gu;Kong Hosung;Jhang Kyung Young
    • Tribology and Lubricants
    • /
    • v.20 no.2
    • /
    • pp.51-57
    • /
    • 2004
  • Micro/nano adhesion and friction properties of mixed self-assembled monolayer (SAM) with different chain length for MEMS application were experimentally studied. Many kinds of SAM having different spacer chains(C6, C10 and C18) and their mixtures (1:1) were deposited onto Si-wafer, where the deposited SAM resulted in the hydrophobic nature. The adhesion and friction properties between tip and SAM surfaces under nano scale applied load were measured using an atomic force microscope (AFM) and under micro scale applied load were measured using ball-on-flat type micro-tribotester. Surface roughness and water contact angles were measured with SPM (scanning probe microscope) and contact anglemeter. Results showed that water contact angles of mixed SAMs were similar to those of pure SAMs. The morphology of coating surface was roughened as mixing of SAM. Nano adhesion and nano friction decreased as increasing of the spacer chain length and mixing of SAM. Micro friction was decreased as increasing of the spacer chain length, but micro friction of mixed SAM showed the value between pure SAMs. Nano adhesion and friction mechanism of mixed SAM was proposed in a view of stiffness of spacer chain modified chemically and topographically.

Micro/nano adhesion and friction properties of mixed self-assembled monolayer (혼합 Self-assembled monolayer의 마이크로/나노 응착 및 마찰 특성)

  • Oh Hyun-Jin;Yoon Eui-Sung;Han Hung-Gu;Kong Hosung;Jhang Kyung Young
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.56-63
    • /
    • 2003
  • Micro/nano adhesion and friction properties of mixed self-assembled monolayer (SAM) with different chain length for MEMS application were experimentally studied. Many kinds of SAM having different spacer chains(C6, C10 and C18) and their mixtures (1:1) were deposited onto Si-wafer, where the deposited SAM resulted in the hydrophobic nature. The adhesion and friction properties between tip and SAM surfaces under nano scale applied load were measured using an atomic force microscope (AFM) and micro scale applied load were measured using ball-on-flat type micro-tribotester. Surface roughness and water wetting angles were measured with SPM (scanning probe microscope) and contact anglemeter. Results showed that wetting angles of mixed SAMs showed the similar value of pure SAMs. The coating surface morphology was increased as mixing of SAM. Nano adhesion and nano friction decreased as increasing of the spacer chain length and mixing of SAM. Micro friction was decreased as increasing of the spacer chain, but micro friction of mixed SAM showed the value between pure SAMs. Nano adhesion and friction mechanism of mixed SAM was proposed in a view of stiffness of spacer chain modified chemically and topographically.

  • PDF

Micro/Nano Adhesion and Friction Properties of SAMs with Different Head and Functional Group according to the Coating Methods (코팅 방법에 따른 이종 SAMs의 관능기별 마이크로/나노 응착 및 마찰 특성)

  • Yoon Eui-Sung;Oh Hyun-Jin;Han Hung-Gu;Kong Hosung
    • Tribology and Lubricants
    • /
    • v.21 no.3
    • /
    • pp.107-113
    • /
    • 2005
  • Micro/nano adhesion and friction properties of self-assembled monolayers (SAMs) with different head- and end-group were experimentally studied according to the coating methods. Various kinds of SAM having different spacer chains (C10 and C18), head-group and end-group were deposited onto Si-wafer by dipping and chemical vapour deposition (CVD) methods under atmospheric pressure, where the deposited SAM resulted in the hydrophobic nature. The adhesion and friction properties between tip and SAM surfaces under nano scale applied load were measured using an atomic force microscope (AFM) and also those under micro scale applied load were measured using a ball-on-flat type micro-tribotester. Surface roughness and water contact angles were measured with SPM (scanning probe microscope) and contact anglemeter respectively. Results showed that water contact angles of SAMs with the end-group of fluorine show higher relatively than those of hydrogen. SAMs with the end-group of fluorine show lower nano-adhesion but higher micro/nanofriction than those with hydrogen. Water contact angles of SAMs coated by CVD method show high values compared to those by dipping method. SAMs coated by CVD method show the increase of nano-adhesion but the decrease of nano-friction. Nano-adhesion and friction mechanism of SAMs with different end-group was proposed in a view of size of fluorocarbon molecule.

Micro/Nano Adhesion and Friction Characteristics of PTFE Coating Film Deposited by IBAD Method (IBAD 방법으로 코팅된 PTFE 박막의 마이크로/나노 응착 및 마찰 특성)

  • 윤의성;오현진;한흥구;공호성;장경영
    • Tribology and Lubricants
    • /
    • v.20 no.5
    • /
    • pp.237-244
    • /
    • 2004
  • Micro/nano tribological characteristics of PTFE coating films were experimentally studied. PTFE (polytetrafluoroethylene) modified polyethylene and low molecular weight PTFE were used as a coating materials. These films were deposited on Si-wafer (100) by IBAD (ion beam assisted deposition) method. The Ar ion beam sputtering was performed to change the surface topography of films using a hollow cathode ion gun under different Ar ion dose conditions in a vacuum chamber. Micro/nano tribological characteristics, water wetting angles and roughness were measured with a micro tribotester, SPM (scanning probe microscope), contact anglemeter and profilometer, respectively. The durability of the films were measured with macro tribotester. Results showed that the PTFE coating surfaces were converted to hydrophobic. The water contact angle of coated surfaces and surface roughness increased with the coating thickness. Adhesion and friction in micro and nano scale were governed by magnitude of normal load in soft material such as PTFE films. As the increase of sputtering time on low molecular weight PTFE films, the surface roughness was increased and nano adhesion and friction were decreased. The nano tribological characteristics of surfaces are mainly improved by chemical modification such as PTFE coating and given a synergy effect by the physical modification such as topographic modification.

An Experimental Study on the Nano-adhesion of Octadecyltrichlorosilane SAM on the Si Surface (OTS SAM의 미소 응착 특성에 관한 실험적 연구)

  • 윤의성;박지현;양승호;한흥구;공호성
    • Tribology and Lubricants
    • /
    • v.17 no.4
    • /
    • pp.276-282
    • /
    • 2001
  • Nano adhesion between SPM (scanning probe microscope) tips and 075 (octadecyltrichlorosilane) SAM (self-assembled monolayer) was experimentally studied. Tests were performed to measure the nano adhesion and friction in both AFM(atomic force microscope) and LFM(lateral force microscope) modes in various conditions of relative humidity. OTS SAM was formed on Si-wafer (100) surfaces, and Si$_3$N$_4$ tips of different radius of curvature were used. When the surface was hydrophobic, the adhesion and friction forces were found lower than those of bare Si-wafer. Results also showed that micro-adhesion force increased as the relative humidity and the tip radius of curvature increased. The main parameter for affecting the micro-adhesion was found absorbed humidity on the contact surface. These results were discussed with the JKR model and a capillary force caused by absorbed water.

Frog-inspired programmable nano-architectures for skin patches and medical applications

  • Kim, Da Wan;Baik, Sang Yul;Kim, Jungwoo;Kim, Ji Won;Pang, Changhyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.366-366
    • /
    • 2016
  • Nanoscale observation of attachment systems of animals has revealed various exquisite multiscale architectures for essential functions such as gecko's locomotion, beetles' wing fixation, octopuses' sucking and crawling. In particular, the hierarchical 3-dimensional hexanonal nano-architectures in the tree frog's adhesion is known to have the capability of the enhancement of adhesion forces on the wet or rough surfaces due to the conformal contacts against rough surfaces and water-drainable micro channels. Here, we report that tree frog-inspired patches using unique artificial 3-dimensional hexagonal structures can be exploited to form reversibly enhanced adhesion against various highly curved and rough surfaces in dry and wet condition. To investigate the adhesion effect of micro-channels, we changed the arrangement of microstructure and spacing gaps between micro-channels. In addition, we introduced the 3-dimensional hexagonal hierarchical architectures to artificial patches to enhance to conformal contacts on the various rough surfaces such as skin and organs. Using the robust adhesion properties, we demonstrated the self-drainable and comfortable skin-attachable devices which can measure EKG (electrokardiogramme) for in-vitro diagnostics. As a result, bio-inspired programmable nano-architectures can be applied in versatile devices such as, medical patches, skin-attachable electronics etc., which would shed light on future smart, directional and reversible adhesion systems.

  • PDF

Analysis of Nano-contact Between Nano-asperities Using Atomic Force Microscopy (나노스케일 표면돌기 간의 미세접촉에 대한 해석)

  • Ahn, Hyo-Sok;Jang, Dong-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.4
    • /
    • pp.369-374
    • /
    • 2009
  • In micro/nano-scale contacts in MEMS and NEMS, capillary and van der Waals forces generated around contacting micro-asperities significantly influence the performance of concerning device as they are closely related to adhesion and stiction of interacting surfaces. In this regard, it is of prime importance to accurately estimate the magnitude of surface forces so that an optimal solution for reducing friction and adhesion of micro/nano-surfaces may be obtained We introduced an effective method to calculate these surface forces based on topography information obtained from an atomic force microscope. This method was used to calculate surface forces generated in the contact interface formed between diamond-like carbon coating and $Si_3N_4$ ball. This method is shown to effectively demonstrate the influence of capillary force in the contact area, especially in humid atmosphere.

  • PDF

Effect of surface topography on wetting angle and micro/nano-tribological characteristics (표면형상이 젖음각과 마이크로/나노 트라이볼로지 특성에 미치는 영향)

  • Yoon, Eui-Sung;Oh, Hyun-Jin;Yang, Seung-Ho;Kong, Ho-Sung
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.25-33
    • /
    • 2002
  • Effect of surface topography on the water wetting nature and micro/nano tribological characteristics of Si-wafer and PTFE was experimentally studied. The ion beam treatment was performed with a hollow cathode ion gun in different argon don dose conditions in a vacuum chamber to change the surface topography, Micro/nano tribological characteristics, water wetting angles and roughness were measured with a micro tribo tester, SPM (scanning prove microscope), contact anglemeter and profilometer, respectively. Results showed that surface roughness increased with the argon ion dose. The water wetting angle of tile ion beam treated samples also increased with the ion dose. Results also showed that micro-adhesion and micro-friction depend on the wetting characteristics of the PTFE samples. However, nano-triboloSical characteristics showed little dependence on the wetting angles. The water wetting characteristics of modified PTFE samples were discussed in terms of the surface topographic characteristics.

  • PDF

Micro/nano Tribological and Water Wetting Characteristics of Ion Beam Treated PTFE Surfaces

  • Yoon, Eui-Sung;Oh, Hyun-Jin;Yang, Seung-Ho;Kong, Hosung
    • KSTLE International Journal
    • /
    • v.3 no.1
    • /
    • pp.12-16
    • /
    • 2002
  • Micro/nano tribological and water wetting characteristics of ion beam treated PTFE (polytetrafluoroethylene) surfaces were experimentally studied. The ion beam treatment was performed with a hollow cathode ion gun at different argon ion dose conditions in a vacuum chamber to modify the topography of PTFE surface. Micro/nano tribological characteristics, water wetting angles and roughness were measured with a micro tribe tester, SPM (scanning probe microscope), contact anglemeter and profilometer, respectively. Results showed that surface roughness increased with the argon ion dose. Water wetting angle of the ion beam treated samples increased with the ion dose, so the surface shows an ultra-hydrophobic nature. Micro-adhesion and micro-friction depend on the wetting characteristics of the PTFE samples. However, nano-tribological characteristics showed different results. The scale effect of surface topography on tribological characteristics was discussed. Also, the water wetting characteristics of modified PTFE samples were discussed in terms of the surface topographic characteristics.

Fabrication of field emitters using a filtration-taping-transfer method

  • Song, Ye-Nan;Shin, Dong-Hoon;Sun, Yuning;Shin, Ji-Hong;Lee, Cheol-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.466-466
    • /
    • 2011
  • There have been several methods to fabricate carbon nanotube (CNT) emitters, which include as-grown, spraying, screen-printing, electrophoresis and bonding methods. Unfortunately, these techniques generally suffer from two main problems. One is a weak mechanical adhesion between CNTs and the cathode. The as-grown, spraying and electrophoresis methods show a weak mechanical adhesion between CNTs and the cathodes, which induces CNT emitters pulled out under a high electric field. The other is a severe degradation of the CNT tip due to organic binders used in the fabrication process. The screen-printing method which is widely used to fabricate CNT emitters generally shows a critical degradation of CNT emitters caused by the organic binder. Such kinds of problems induce a short lifetime of the CNT field emitters which may limit their practical applications. Therefore, a robust CNT emitter which has the strong mechanical adhesion and no degradation is still a great challenge. Here, we introduce a simple and effective technique for fabrication of CNT field emitter, namely filtration-taping-transfer method. The CNT emitters fabricated by the filtration-taping-transfer method show the low turn-on electric fields, the high emission current, good uniformity and good stability. The enhanced emission performance of the CNT emitters is mainly attributed to high emission sites on the emitter area, and to good ohmic contact and strong mechanical adhesion between the emitters and cathodes. The CNT emitters using a simple and effective fabrication method can be applied for various field emission applications such as field emission displays, lamps, e-beam sources, and x-ray sources. The detail fabrication process will be covered at the poster.

  • PDF