• Title/Summary/Keyword: miSeq

Search Result 106, Processing Time 0.032 seconds

Impact of Breed on the Fecal Microbiome of Dogs under the Same Dietary Condition

  • Reddy, Kondreddy Eswar;Kim, Hye-Ran;Jeong, Jin Young;So, Kyoung-Min;Lee, Seul;Ji, Sang Yun;Kim, Minji;Lee, Hyun-Jung;Lee, Sungdae;Kim, Ki-Hyun;Kim, Minseok
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.12
    • /
    • pp.1947-1956
    • /
    • 2019
  • The gut microbiome influences the health and well-being of dogs. However, little is known about the impact of breed on the fecal microbiome composition in dogs. Therefore, we aimed to investigate the differences in the fecal microbiome in three breeds of dog fed and housed under the same conditions, namely eight Maltese (8.0 ± 0.1 years), eight Miniature Schnauzer (8.0 ± 0.0 years), and nine Poodle dogs (8.0 ± 0.0 years). Fresh fecal samples were collected from the dogs and used to extract metagenomic DNA. The composition of the fecal microbiome was evaluated by 16S rRNA gene amplicon sequencing on the MiSeq platform. A total of 840,501 sequences were obtained from the 25 fecal samples and classified as Firmicutes (32.3-97.3% of the total sequences), Bacteroidetes (0.1-62.6%), Actinobacteria (0.2-14.7%), Fusobacteria (0.0-5.7%), and Proteobacteria (0.0-5.1%). The relative abundance of Firmicutes was significantly lower in the Maltese dog breed than that in the other two breeds, while that of Fusobacteria was significantly higher in the Maltese than in the Miniature Schnauzer breed. At the genus level, the relative abundance of Streptococcus, Fusobacterium, Turicibacter, Succinivibrio, and Anaerobiospirillum differed significantly among the three dog breeds. These genera had no correlation with age, diet, sex, body weight, vaccination history, or parasite protection history. Within a breed, some of these genera had a correlation with at least one blood chemistry value. This study indicates that the composition of the fecal microbiome in dogs is affected by breed.

Differential Impacts on Bacterial Composition and Abundance in Rhizosphere Compartments between Al-Tolerant and Al-Sensitive Soybean Genotypes in Acidic Soil

  • Wen, Zhong-Ling;Yang, Min-Kai;Fazal, Aliya;Liao, Yong-Hui;Cheng, Lin-Run;Hua, Xiao-Mei;Hu, Dong-Qing;Shi, Ji-Sen;Yang, Rong-Wu;Lu, Gui-Hua;Qi, Jin-Liang;Hong, Zhi;Qian, Qiu-Ping;Yang, Yong-Hua
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.8
    • /
    • pp.1169-1179
    • /
    • 2020
  • In this study, two soybean genotypes, i.e., aluminum-tolerant Baxi 10 (BX10) and aluminumsensitive Bendi 2 (BD2), were used as plant materials and acidic red soil was used as growth medium. The soil layers from the inside to the outside of the root are: rhizospheric soil after washing (WRH), rhizospheric soil after brushing (BRH) and rhizospheric soil at two sides (SRH), respectively. The rhizosphere bacterial communities were analyzed by high-throughput sequencing of V4 hypervariable regions of 16S rRNA gene amplicons via Illumina MiSeq. The results of alpha diversity analysis showed that the BRH and SRH of BX10 were significantly lower in community richness than that of BD2, while the WRH exhibited no significant difference between BX10 and BD2. Among the three sampling compartments of the same soybean genotype, WRH had the lowest community richness and diversity while showing the highest coverage. Beta diversity analysis results displayed no significant difference for any compartment between the two genotypes, or among the three different sampling compartments for any same soybean genotype. However, the relative abundance of major bacterial taxa, specifically nitrogen-fixing and/or aluminum-tolerant bacteria, was significantly different in the compartments of the BRH and/or SRH at phylum and genus levels, indicating genotype-dependent variations in rhizosphere bacterial communities. Strikingly, as compared with BRH and SRH, the WRH within the same genotype (BX10 or BD2) always had an enrichment effect on rhizosphere bacteria associated with nitrogen fixation.

Fine mapping of rice bacterial leaf blight resistance loci to major Korean races of Xoo (Xanthomonas oryzae)

  • Lee, Myung-Chul;Choi, Yu-Mi;Lee, Sukyeung;Yoon, Hyemyeong;Oh, Sejong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.73-73
    • /
    • 2018
  • Bacterial leaf blight(BLB), caused by X. oryzae pv. oryzae(Xoo), is one of the most destructive diseases of rice due to its high epidemic potential. Understanding BLB resistance at a genetic level is important to further improve the rice breeding that provides one of the best approaches to control BLB disease. In the present investigation, a collection of 192 accessions was used in the genome-wide association study (GWAS) for BLB resistance loci against four Korean races of Xoo that were represented by the prevailing BLB isolates under Xoo differential system. A total of 192 accessions of rice germplasm were selected on the basis of the bioassay using four isolated races of Xoo such as K1, K2, K3 and K3a. The selected accessions was used to prepare 384-plex genotyping by sequencing (GBS) libraries and Illumina HiSeq 2000 paired- end read was used for GBS sequencing. GWAS was conducted using T ASSEL 5.0. The T ASSEL program uses a mixed linear model (MLM). T he results of the bioassay using a selected set of 192 accessions showed that a large number of accessions (93.75%) were resistant to K1 race, while the least number of accessions (34.37%) resisted K3a race. For races K2 and K3, the resistant germplasm proportion remained between 66.67 to 70.83%. T he genotypic data produced SNP matrix for a total of 293,379 SNPs. After imputation the missing data was removed, which exhibited 34,724 SNPs for association analysis. GWAS results showed strong signals of association at a threshold of [-log10(P-value)] more than5 (K1 and K2) and more than4 (K3 and K3a) for nine of the 39 SNPs, which are plausible candidate loci of resistance genes. T hese SNP loci were positioned on rice chromosome 2, 9, and 11 for K1 and K2 races, whereas on chromosome 4, 6, 11, and 12 for K3 and K3a races. The significant loci detected have also been illustrated, NBS-LRR type disease resistance protein, SNARE domain containing protein, Histone deacetylase 19, NADP-dependent oxidoreductase, and other expressed and unknown proteins. Our results provide a better understanding of the distribution of genetic variation of BLB resistance to Korean pathogen races and breeding of resistant rice.

  • PDF

Effects of Sampling Techniques and Sites on Rumen Microbiome and Fermentation Parameters in Hanwoo Steers

  • Song, Jaeyong;Choi, Hyuck;Jeong, Jin Young;Lee, Seul;Lee, Hyun Jung;Baek, Youlchang;Ji, Sang Yun;Kim, Minseok
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.10
    • /
    • pp.1700-1705
    • /
    • 2018
  • We evaluated the influence of sampling technique (cannulation vs. stomach tube) and site (dorsal sac vs. ventral sac) on the rumen microbiome and fermentation parameters in Hanwoo steers. Rumen samples were collected from three cannulated Hanwoo steers via both a stomach tube and cannulation, and 16S rRNA gene amplicons were sequenced on the MiSeq platform to investigate the rumen microbiome composition among samples obtained via 1) the stomach tube, 2) dorsal sac via rumen cannulation, and 3) ventral sac via rumen cannulation. A total of 722,001 high-quality 16S rRNA gene sequences were obtained from the three groups and subjected to phylogenetic analysis. There was no significant difference in the composition of the major taxa or alpha diversity among the three groups (p>0.05). Bacteroidetes and Firmicutes represented the first and second most dominant phyla, respectively, and their abundances did not differ among the three groups (p>0.05). Beta diversity principal coordinate analysis also did not separate the rumen microbiome based on the three sample groups. Moreover, there was no effect of sampling site or method on fermentation parameters, including pH and volatile fatty acids (p>0.05). Overall, this study demonstrates that the rumen microbiome and fermentation parameters are not affected by different sampling techniques and sampling sites. Therefore, a stomach tube can be a feasible alternative method to collect representative rumen samples rather than the standard and more invasive method of rumen cannulation in Hanwoo steers.

Gut Bacterial Diversity of Insecticide-Susceptible and -Resistant Nymphs of the Brown Planthopper Nilaparvata lugens Stål (Hemiptera: Delphacidae) and Elucidation of Their Putative Functional Roles

  • Malathi, Vijayakumar M.;More, Ravi P.;Anandham, Rangasamy;Gracy, Gandhi R.;Mohan, Muthugounder;Venkatesan, Thiruvengadam;Samaddar, Sandipan;Jalali, Sushil Kumar;Sa, Tongmin
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.6
    • /
    • pp.976-986
    • /
    • 2018
  • Knowledge about the gut bacterial communities associated with insects is essential to understand their roles in the physiology of the host. In the present study, the gut bacterial communities of a laboratory-reared insecticide-susceptible (IS), and a field-collected insecticide-resistant (IR) population of a major rice pest, the brown planthopper Nilaparvata lugens, were evaluated. The deep-sequencing analysis of the V3 hypervariable region of the 16S rRNA gene was performed using Illumina and the sequence data were processed using QIIME. The toxicological bioassays showed that compared with the IS population, IR population exhibited 7.9-, 6.7-, 14.8-, and 18.7-fold resistance to acephate, imidacloprid, thiamethoxam, and buprofezin, respectively. The analysis of the alpha diversity indicated a higher bacterial diversity and richness associated with the IR population. The dominant phylum in the IS population was Proteobacteria (99.86%), whereas the IR population consisted of Firmicutes (46.06%), followed by Bacteroidetes (30.8%) and Proteobacteria (15.49%). Morganella, Weissella, and Enterococcus were among the genera shared between the two populations and might form the core bacteria associated with N. lugens. The taxonomic-to-phenotypic mapping revealed the presence of ammonia oxidizers, nitrogen fixers, sulfur oxidizers and reducers, xylan degraders, and aromatic hydrocarbon degraders in the metagenome of N. lugens. Interestingly, the IR population was found to be enriched with bacteria involved in detoxification functions. The results obtained in this study provide a basis for future studies elucidating the roles of the gut bacteria in the insecticide resistance-associated symbiotic relationship and on the design of novel strategies for the management of N. lugens.

Anti-proliferative Properties of p-Coumaric Acid in SNU-16 Gastric Cancer Cells (SNU-16 위암 세포주에서 p-coumaric acid의 세포성장 억제 효과)

  • Jang, Mi Gyeong;Ko, Hee Chul;Kim, Se-Jae
    • Journal of Life Science
    • /
    • v.29 no.7
    • /
    • pp.809-816
    • /
    • 2019
  • The ubiquitous plant metabolite p-coumaric acid (p-CA) has antioxidant and anti-inflammatory properties, but its anti-cancer activity has not been established in gastric cancer cell lines. In this study, we investigated the effects of p-CA on the proliferation and transcriptome profile of SNU16 gastric cancer cells. Treatment with p-CA induced apoptosis of the SNU-16 cells by regulating the expression of pro-apoptotic and anti-apoptotic proteins, such as Bcl-2, poly (ADP-ribose) polymerase (PARP), Bax, procaspase-3, and cleaved-caspase-3. The genes differentially expressed in response to p-CA treatment of the SNU-16 cells were identified by RNA sequencing analysis. Genes regulated by p-CA were involved mainly in the inflammatory response, apoptotic processes, cell cycle, and immune response. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that the phosphatidylinositol-3-kinase-Akt and cancer signaling pathways were altered by p-CA. Protein-protein interaction (PPI) network analysis also revealed that p-CA treatment was correlated with differential expression of genes associated with the inflammatory response and cancer. Collectively, these results suggest that p-CA has potential utility in gastric cancer prevention.

The first Korean case with Floating-Harbor syndrome with a novel SRCAP mutation diagnosed by targeted exome sequencing

  • Choi, Eun Mi;Lee, Dong Hyun;Kang, Seok Jin;Shim, Ye Jee;Kim, Heung Sik;Kim, Joon Sik;Jeong, Jong In;Ha, Jung-Sook;Jang, Ja-Hyun
    • Clinical and Experimental Pediatrics
    • /
    • v.61 no.12
    • /
    • pp.403-406
    • /
    • 2018
  • Floating-Harbor syndrome is a rare autosomal dominant genetic disorder associated with SRCAP mutation. To date, approximately 50 cases of Floating-Harbor syndrome have been reported, but none have been reported in Korea yet. Floating-Harbor syndrome is characterized by delayed bony maturation, unique facial features, and language impairment. Here, we present a 6-year-old boy with a triangular face, deep-set protruding eyes, low-set ears, wide nose with narrow nasal bridge, short philtrum, long thin lips, clinodactyly, and developmental delay that was transferred to our pediatric clinic for genetic evaluation. He showed progressive delay in the area of language and cognition-adaption as he grew. He had previously undergone chromosomal analysis at another hospital due to his language delay, but his karyotype was normal. We performed targeted exome sequencing, considering several syndromes with similar phenotypes. Library preparation was performed with the TruSight One sequencing panel, which enriches the sample for about 4,800 genes of clinical relevance. Massively parallel sequencing was conducted with NextSeq. An identified variant was confirmed by Sanger sequencing of the patient and his parents. Finally, the patient was confirmed as the first Korean case of Floating-Harbor syndrome with a novel SRCAP (Snf2 related CREBBP activator protein) mutation (c.7732dupT, p.Ser2578Phefs*6), resulting in early termination of the protein; it was not found in either of his healthy parents or a control population. To our knowledge, this is the first study to describe a boy with Floating-Harbor syndrome with a novel SRCAP mutation diagnosed by targeted exome sequencing in Korea.

Protective effects of Sasa quelpaertensis Leaf Residue Extract against Potassium Oxonate-induced Hyperuricemia in Mice (생쥐에서 제주조릿대 잎 잔사 추출물의 고요산 혈증 저감 효과)

  • Jang, Mi Gyeong;Song, Hana;Lee, Ju Yeop;Ko, Hee Chul;Hur, Sung-Pyo;Kim, Se Jae
    • Journal of Life Science
    • /
    • v.29 no.1
    • /
    • pp.37-44
    • /
    • 2019
  • Leaves of Sasa quelpaertensis Nakai are used in folk medicine for their anti-inflammatory, antipyretic, and diuretic properties. To ensure efficient utilization of S. quelpaertensis leaf, we previously reported a preparation method for phytochemical-rich extract (PRE) using the leaf residue, which was produced after hot water extraction. This study was undertaken to evaluate the hypouricemic potential of S. quelpaertensis leaf PRE in potassium oxonate (PO)-induced hyperuricemic mice. The administration of PRE significantly reduced serum uric acid (UA), blood urea nitrogen (BUN), and serum creatinine levels and increased urine UA and creatinine levels in the PO-induced hyperuricemic mice. It also reduced liver UA levels and xanthine oxidase (XA) activity. A histological analysis revealed that PRE administration protected against PO-induced liver damage, pointing to anti-inflammatory and cytoprotective effects in PO-induced hyperuricemic mice. We analyzed the transcriptome response to PRE administration in PO-induced hyperuricemic mice using RNA sequencing (RNA-Seq) in kidney tissues. The administration of PRE mainly enriched genes involved in mediating immune and inflammatory responses and the metabolic pathway. A Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the metabolic pathway, purine metabolism, and antibody biosynthesis were the major pathways altered in the PRE and PO groups. These results suggest a potential role for PRE in the prevention and treatment of hyperuricemia with inflammation.

Current Status and Prospect of Wheat Functional Genomics using Next Generation Sequencing (차세대 염기서열분석을 통한 밀 기능유전체 연구의 현황과 전망)

  • Choi, Changhyun;Yoon, Young-Mi;Son, Jae-Han;Cho, Seong-Woo;Kang, Chon-Sik
    • Korean Journal of Breeding Science
    • /
    • v.50 no.4
    • /
    • pp.364-377
    • /
    • 2018
  • Hexaploid wheat (common wheat/bread wheat) is one of the most important cereal crops in the world and a model for research of an allopolyploid plant with a large, highly repetitive genome. In the heritability of agronomic traits, variation in gene presence/absence plays an important role. However, there have been relatively few studies on the variation in gene presence/absence in crop species, including common wheat. Recently, a reference genome sequence of common wheat has been fully annotated and published. In addition, advanced next-generation sequencing (NGS) technology provides high quality genome sequences with continually decreasing NGS prices, thereby dawning full-scale wheat functional genomic studies in other crops as well as common wheat, in spite of their large and complex genomes. In this review, we provide information about the available tools and methodologies for wheat functional genomics research supported by NGS technology. The use of the NGS and functional genomics technology is expected to be a powerful strategy to select elite lines for a number of germplasms.

Effect of Korea red ginseng on nonalcoholic fatty liver disease: an association of gut microbiota with liver function

  • Hong, Ji Taek;Lee, Min-Jung;Yoon, Sang Jun;Shin, Seok Pyo;Bang, Chang Seok;Baik, Gwang Ho;Kim, Dong Joon;Youn, Gi Soo;Shin, Min Jea;Ham, Young Lim;Suk, Ki Tae;Kim, Bong-Soo
    • Journal of Ginseng Research
    • /
    • v.45 no.2
    • /
    • pp.316-324
    • /
    • 2021
  • Background: Korea Red Ginseng (KRG) has been used as remedies with hepato-protective effects in liver-related condition. Microbiota related gut-liver axis plays key roles in the pathogenesis of chronic liver disease. We evaluated the effect of KRG on gut-liver axis in patients with nonalcoholic statohepatitis by the modulation of gut-microbiota. Methods: A total of 94 patients (KRG: 45 and placebo: 49) were prospectively randomized to receive KRG (2,000 mg/day, ginsenoside Rg1+Rb1+Rg3 4.5mg/g) or placebo during 30 days. Liver function test, cytokeraton 18, and fatigue score were measured. Gut microbiota was analyzed by MiSeq systems based on 16S rRNA genes. Results: In KRG group, the mean levels (before vs. after) of aspartate aminotransferase (53 ± 19 vs. 45 ± 23 IU/L), alanine aminotransferase (75 ± 40 vs. 64 ± 39 IU/L) and fatigue score (33 ± 13 vs. 26 ± 13) were improved (p < 0.05). In placebo group, only fatigue score (34 ± 13 vs. 31 ± 15) was ameliorated (p < 0.05). The changes of phyla were not statistically significant on both groups. In KRG group, increased abundance of Lactobacillus was related with improved alanine aminotransferase level and increased abundance of Clostridium and Intestinibacter was associated with no improvement after KRG supplementation. In placebo group, increased abundance of Lachnospiraceae could be related with aggravation of liver enzyme (p < 0.05). Conclusion: KRG effectively improved liver enzymes and fatigue score by modulating gut-microbiota in patients with fatty liver disease. Further studies are needed to understand the mechanism of improvement of nonalcoholic steatohepatitis. ClnicalTrials.gov: NCT03945123 (www.ClinicalTrials.gov).