Browse > Article
http://dx.doi.org/10.5352/JLS.2019.29.1.37

Protective effects of Sasa quelpaertensis Leaf Residue Extract against Potassium Oxonate-induced Hyperuricemia in Mice  

Jang, Mi Gyeong (Jeju Sasa Industry Development Agency, Jeju National University)
Song, Hana (Jeju Sasa Industry Development Agency, Jeju National University)
Lee, Ju Yeop (Jeju Sasa Industry Development Agency, Jeju National University)
Ko, Hee Chul (Jeju Sasa Industry Development Agency, Jeju National University)
Hur, Sung-Pyo (Korea Institute of Ocean Science & Technology)
Kim, Se Jae (Jeju Sasa Industry Development Agency, Jeju National University)
Publication Information
Journal of Life Science / v.29, no.1, 2019 , pp. 37-44 More about this Journal
Abstract
Leaves of Sasa quelpaertensis Nakai are used in folk medicine for their anti-inflammatory, antipyretic, and diuretic properties. To ensure efficient utilization of S. quelpaertensis leaf, we previously reported a preparation method for phytochemical-rich extract (PRE) using the leaf residue, which was produced after hot water extraction. This study was undertaken to evaluate the hypouricemic potential of S. quelpaertensis leaf PRE in potassium oxonate (PO)-induced hyperuricemic mice. The administration of PRE significantly reduced serum uric acid (UA), blood urea nitrogen (BUN), and serum creatinine levels and increased urine UA and creatinine levels in the PO-induced hyperuricemic mice. It also reduced liver UA levels and xanthine oxidase (XA) activity. A histological analysis revealed that PRE administration protected against PO-induced liver damage, pointing to anti-inflammatory and cytoprotective effects in PO-induced hyperuricemic mice. We analyzed the transcriptome response to PRE administration in PO-induced hyperuricemic mice using RNA sequencing (RNA-Seq) in kidney tissues. The administration of PRE mainly enriched genes involved in mediating immune and inflammatory responses and the metabolic pathway. A Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the metabolic pathway, purine metabolism, and antibody biosynthesis were the major pathways altered in the PRE and PO groups. These results suggest a potential role for PRE in the prevention and treatment of hyperuricemia with inflammation.
Keywords
Hyperuricemia; potassium oxonate; RNA sequencing; Sasa quelpaertensis; uric acid;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Langmead, B. and Salzberg, S. L. 2012. Fast gapped-read alignment with Bowtie 2. Nat. Mathods 9, 357-359.
2 Lee, J. Y., Ko, H. C., Jang, M. G. and Kim, S. J. 2016. Preparation and characterization of phytochemical-rich extract from Sasa quelpaertensis leaf. J. Life Sci. 26, 1330-1335.   DOI
3 Li, J. M., Zhang, X., Wang, X., Xie, Y. C. and Kong, L. D. 2011. Protective effects of cortex fraxini coumarines against oxonate-induced hyperuricemia and renal dysfunction in mice. Eur. J. Pharmacol. 666, 196-204.   DOI
4 Lin, K. C., Lin, H. Y. and Chou, P. 2000. The interaction between uric acid level and other risk factors on the development of gout among asymptomatic hyperuricemic men in a prospective study. J. Rheumatol. 27, 1501-1505.
5 Okabe, S., Takeuchi, K., Takagi, K. and Shibata, M. 1975. Stimulatory effect of the water extract of bamboo grass (Folin solution) on gastric acid secretion in pylorus-ligated rats. Jap. J. Pharm. 25, 608-609.   DOI
6 Pacher, P., Nivorozhkin, A. and Szabo, C. 2006. Therapeutic effects of xanthine oxidase inhibitors: Renaissance half a century after the discovery of allopurinol. Pharmacol. Rev. 58, 87-114.   DOI
7 So, A. and Thorens, B. 2010. Uric acid transport and disease. J. Clini. Investig. 120, 1791-1799.   DOI
8 Quinlan, A. R. and Hall, I. M. 2010. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841-842.   DOI
9 Ren, M., Reilly, R. T. and Sacchi, N. 2001. Sasa health exerts a protective effect on Her2/NeuN mammary tumorigenesis. Anticancer Res. 24, 2879-2884.
10 Tubaro, E., Banci, F., Lotti, B. and Croce, C. 1976. Xanthine oxidase activation in animal liver during infectious processes. Arzneimittel-Forschung 26, 2185-2186.
11 Wang, M. X., Liu, Y. L., Yang, Y., Zhang, D. M. and Kong, L. D. 2015. Nuciferine restores potassium oxonate-induced hyperuricemia and kidney inflammation in mice. Eur. J. Pharm. 747, 59-70.   DOI
12 Fan, C. Y., Wang, M. X., Ge, C. X., Wang, X., Li, J. M. and Kong, L. D. 2014. Betaine supplementation protects against high-fructose-induced renal injury in rats. J. Nutr. Biochem. 25, 353-362.   DOI
13 Chen, G., Tan, M. L., Li, K. K., Leung, P. C. and Ko, C. H. 2015. Green tea polyphenols decreases uric acid level through xanthine oxidase and renal urate transporters in hyperuricemic mice. J. Ethnopharmacol. 175, 14-20.   DOI
14 Duke, E. J., Joyce, P. and Ryan, J. P. 1973. Characterization of alternative molecular forms of xanthine oxidase in the mouse. Biochem. J. 131, 187-190.   DOI
15 Edwards, N. L. 2009. The role of hyperuricemia in vascular disorders. Curr. Opin. Rheumatol. 21, 132-137.   DOI
16 Feig, D. I., Kang, D. H. and Johnson, R. J. 2008. Uric acid and cardiovascular risk. N. Engl. J. Med. 359, 1811-1821.   DOI
17 Freig, D. I., Soletsky, B. and Johnson, R. J. 2008. Effect of allopurinol on blood pressure of adolescents with newly diagnosed essential hypertension: A randomized trial. JAMA. 300, 924-932.   DOI
18 Gentleman, R. C., Carey, V. J., Bates, D. M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B., Gautier, L., Ge, Y., Gentry, J., Homik, K., Hothorn, T., Buber, W., Lacus, S., Lrizarry, R., Leisch, F., Li, C., Maechler, M., Rossini, A. J., Sawitzki, G., Smith, C., Smyth, G., Tierney, L., Yang, J. Y. and Zhang, J. 2004. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, R80.   DOI
19 George, J. and Struthers, A. D. 2009. Roles of urate, xanthine oxidase and effects of allopurinol in vascular oxidative stress. Vasc. Health. Risk Manag. 5, 265-272.   DOI
20 Hidetomo, K., Satomi, K., Rie, A., kouki, S., Atsuko, O., Tadashi, T. and Katsuyoshi, S. 2017. Rosehip inhibits xanthine oxidase activity and reduces serum urate levels in a mouse model of hyperuricemia. Biomed. Rep. 6, 539-544   DOI
21 Hwang, J. H., Choi, S. Y., Ko, H. C., Jang, M. G., Jin, Y. J., Kang, S. I., Park, J. G., Chung, W. S. and Kim, S. J. 2007. Anti-inflammatory effect of the hot water extract from Sasa quelpaedensis leaves. Food Sci. Biotech. 16, 728-733.
22 Kim, K. M., Kim, Y. S., Lim, J. Y., Min, S. J., Shin, J. H., Ko, H. C., Kim, S. J., Lim, Y. and Kim, Y. 2014. Sasa quelpaertensis leaf extract suppresses dextran sulfate sodium- induced colitis in mice by inhibiting the proinflammatory mediators and mitogen-activated protein kinase phosphorylation. Nutr. Res. 34, 894-905.   DOI
23 Kang, S. I., Shin, H. S., Kim, H. M., Hong, Y. S., Yoon, S. A., Kang, S. W., Kim, J. H., Ko, H. C. and Kim, S. J. 2012. Anti-obesity properties of a Sasa quelpaertensis extract in high-fat diet-induced obese mice. Biosci. Biotechnol. Biochem. 76, 755-761.   DOI
24 Kikuchi, H., Kogure, S., Apai, R., Saino, K., Ohkubo, A., Tsuda, T. and Sunaga, K. 2017. Rosehip inhibits xanthine oxidase activity and reduces serum urate levels in a mouse model of hyperuricemia. Biomed. Rep. 6, 539-544.   DOI
25 Kim, J. H., Kang, S. I., Shin, H. S., Yoon, S. A., Kang, S. W., Ko, H. C. and Kim, S. J. 2013. Sasa quelpaertensis and p-coumaric acid attenuate oleic acid-induced lipid accululation in HepG2 cells. Biosci. Biotechnol. Biochem. 77, 1595-1598.   DOI