• Title/Summary/Keyword: metric connection with torsion

Search Result 13, Processing Time 0.017 seconds

ON NEARLY PARAKÄHLER MANIFOLDS

  • Gezer, Aydin;Turanli, Sibel
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.871-879
    • /
    • 2018
  • The purpose of the present paper is to study on nearly $paraK{\ddot{a}}hler$ manifolds. Firstly, to investigate some properties of the Ricci tensor and the $Ricci^*$ tensor of nearly $paraK{\ddot{a}}hler$ manifolds. Secondly, to define a special metric connection with torsion on nearly $paraK{\ddot{a}}hler$ manifolds and present its some properties.

CONNECTIONS ON ALMOST COMPLEX FINSLER MANIFOLDS AND KOBAYASHI HYPERBOLICITY

  • Won, Dae-Yeon;Lee, Nany
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.1
    • /
    • pp.237-247
    • /
    • 2007
  • In this paper, we establish a necessary condition in terms of curvature for the Kobayashi hyperbolicity of a class of almost complex Finsler manifolds. For an almost complex Finsler manifold with the condition (R), so-called Rizza manifold, we show that there exists a unique connection compatible with the metric and the almost complex structure which has the horizontal torsion in a special form. With this connection, we define a holomorphic sectional curvature. Then we show that this holomorphic sectional curvature of an almost complex submanifold is not greater than that of the ambient manifold. This fact, in turn, implies that a Rizza manifold is hyperbolic if its holomorphic sectional curvature is bounded above by -1.

$L^2$-transverse fields preserving the transverse ricci field of a foliation

  • Pak, Jin-Suk;Shin, Yang-Jae;Yoo, Hwal-Lan
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.51-60
    • /
    • 1995
  • Let $(M,g_M,F)$ be a (p+q)-dimensional connected Riemannian manifold with a foliation $F$ of codimension q and a complete bundle-like metric $g_M$ with respect to $F$. Let $Ric_D$ be the transverse Ricci field of $F$ with respect to the transverse Riemannian connection D which is a torsion-free and $g_Q$-metrical connection on the normal bundle Q of $F$. We consider transverse confomal (or, projective) fields of $F$. It is clear that a tranverse Killing field s of $F$ preserves the transverse Ricci field of $F$, that is, $\Theta(s)Ric_D = 0$, where $\Theta(s)$ denotes the transverse Lie differentiation with respect to s.

  • PDF