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ON NEARLY PARAKÄHLER MANIFOLDS

Aydin Gezer and Sibel Turanli

Abstract. The purpose of the present paper is to study on nearly para-

Kähler manifolds. Firstly, to investigate some properties of the Ricci

tensor and the Ricci* tensor of nearly paraKähler manifolds. Secondly,
to define a special metric connection with torsion on nearly paraKähler

manifolds and present its some properties.

1. Introduction

An almost product structure on a 2k-dimensional smooth manifold M is
a (1, 1)-tensor field P squaring to the identity. In this case, the pair (M,P )
is called an almost product manifold. An almost paracomplex manifold is an
almost product manifold (M,P ) such that the two eigenbundles T+M and
T−M associated with the two eigenvalues ±1 of P have the same rank. The
Nijenhuis tensor N of an almost paracomplex structure P is given by

NP (X,Y ) = [PX,PY ]− P [PX, Y ]− P [X,PY ] + [X,Y ].

It is well known that an almost paracomplex structure is integrable if and only
if the corresponding Nijenhuis tensor N vanishes. An integrable almost para-
complex structure is a paracomplex structure. For a survey on paracomplex
geometry we refer to [1].

An almost paraHermitian manifold consists of a smooth manifold M en-
dowed with an almost paracomplex structure P and a pseudo-Riemannian
metric g compatible in the sense that

(1.1) g(PX, Y ) = −g(X,PY ) or equivalently g(PX,PY ) = −g(X,Y ).

Note that the metric g is neutral, i.e., it has signature (k, k) and the eigen-
bundles T±M are totally isotropic with respect to g. The condition (1.1) also
implies that g is hybrid with respect to P . The 2-covariant skew-symmetric
tensor field F defined by F (X,Y ) = g(PX, Y ) is the fundamental 2-form of
the almost paraHermitian manifold (M, g, P ). Recall the defining conditions
of some of the classes:
−NP = 0, paraHermitian manifolds,
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−dF = 0, almost paraKähler manifolds,
−∇gP = 0⇔ dF = 0 and NP = 0, paraKähler manifolds,
−(∇g

XP )X = 0, nearly paraKähler manifolds. Here and in the following, let
∇g always denote the Levi-Civita connection of the pseudo-Riemannian metric
g of an almost paraHermitian manifold.

Nearly paraKähler manifolds have been introduced in [5]. These manifolds
naturally appear as one class in the classification of almost paraHermitian
manifolds [2, 6], which generalizes type W1 in the well-known Gray–Hervella
classification [4] of almost Hermitian structures. In the present note, we study
some properties concerning nearly paraKähler structures on a differentiable
manifold endowed with a naturally associated metric which is necessarily of
neutral signature. We give some of local and global results in nearly paraKähler
manifolds. Throughout this paper, manifolds, tensor fields and connections
under consideration are all assumed to be differentiable and of class C∞.

2. Nearly paraKähler manifolds

An almost paraHermitian manifold (M, g, P ) is called nearly paraKähler if
the almost paraHermitian structure is not paraKähler and satisfies the identity

(2.1) (∇g
XF )(Y,Z) + (∇g

Y F )(X,Z) = 0

for any vector fields X,Y, Z on M , where F is the fundamental 2−form of the
almost paraHermitian manifold (M, g, P ). It is easy to see that the condition
(2.1) reduces to

(2.2) (∇g
XP )Y + (∇g

Y P )X = 0

for the almost paracomplex structure P .
Recall that the Nijenhuis tensor of the almost paracomplex structure P

satisfies

NP (X,Y ) = [PX,PY ]− P [PX, Y ]− P [X,PY ] + [X,Y ]

= −P [(∇g
PXP )PY − (∇g

PY P )PX]− P [(∇g
XP )Y − (∇g

Y P )X]

for vector fields X,Y, Z on M . Here we use the formula:

∇g
XY −∇g

Y X = [X,Y ] and (∇g
XP )PY = −P (∇g

XP )Y.

On the nearly paraKähler manifold (M, g, P ), the Nijenhuis tensor NP simpli-
fies to

NP (X,Y ) = −4P (∇g
XP )Y (see also [5]).

When the Nijenhuis tensor NP vanishes, we obtain ∇gP = 0 which gives the
following proposition.

Proposition 2.1. An integrable nearly paraKähler manifold is always a para-
Kähler manifold.
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2.1. Properties concerning Ricci and Ricci* tensors

Let (M, g, P ) be a 2k-dimensional nearly paraKähler manifold. Coordinate
systems in M are denoted (U, xi), where U is the coordinate neighbourhood
and xi, i = 1, 2, . . . , 2k are the coordinate functions. On putting X = ∂

∂xi and

Y = ∂
∂xj , the conditions (2.1) and (2.2) can be respectively written in local

coordinates as
∇g

iFjm +∇g
jFim = 0

and
∇g

iP
h
j +∇g

jP
h
i = 0.

Contraction with respect to i and h in the last equation gives ∇g
iP

i
j = 0.

Proposition 2.2. In a nearly paraKähler manifold (M, g, P ), the Ricci tensor
is hybrid with respect to the almost paracomplex structure P .

Proof. In a nearly paraKähler manifold (M, g, P ), if we apply the Ricci identity
to the tensor P i

j , we get

∇g
k∇

g
jP

h
i −∇

g
j∇

g
kP

h
i = Rg h

kjm Pm
i −Rg m

kji Ph
m,

where Rg h
kji are components of the Riemannian curvature tensor Rg. Con-

tracting the above equation with respect to k and h, with help of ∇g
iP

i
j = 0,

we obtain

∇g
h∇

g
jP

h
i = Rg

jmPm
i −Rg m

hji Ph
m = Rg

jmPm
i −Rg

hjilg
lmPh

m

(2.3) = Rg
jmPm

i −Rg
hjilF

lh = Rg
jmPm

i −Hji.

Here Rg
jm are the components of the Ricci tensor of g, F lh are the contravariant

components of the fundamental 2-form F and Hji = Rg
hjilF

lh. The tensor

Hji is an anti-symmetric tensor, i.e., H(ji) = 0. In fact, by means of F lh =

−Fhl, Rg
(hj)il = Rhj(il) = 0, we have

Hji =
1

2

(
Rg

hjil + Rg
ljih

)
F lh =

1

2

(
Rg

hjil −Rg
ihlj

)
F lh

and similarly

Hij =
1

2

(
Rg

hijl −Rg
jhli

)
F lh

from which,

Hji + Hij =
(
Rg

hjil −Rg
ihlj + Rg

hijl −Rg
jhli

)
F lh = 0.

Changing the role j and i in (2.3), we write

(2.4) ∇h∇iP
h
j = Rg

imPm
j −Hij .

Adding (2.3) to (2.4), we have

∇h(∇jP
h
i +∇iP

h
j ) = Rg

jmPm
i + Rg

imPm
j − 2H(ij),
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which gives

Rg
mjP

m
i = −Rg

imPm
j

by virtue of Rg
jm = Rg

mj . �

Theorem 2.3. In a nearly paraKähler manifold (M, g, P ), in order that Rg =
−Rg∗, it is necessary and sufficient that:

∇gm∇g
mFji = 0,

where Rg and Rg∗ are respectively the Ricci tensor and the Ricci* tensor of g
and F is the fundamental 2-form of (M, g, P ).

Proof. Let (M, g, P ) be a nearly paraKähler manifold. The tensor Rg∗ which
is locally expressed as

Rg∗
ji = −HjmPm

i = −Rg
hjmlF

lhPm
i

is called the Ricci* tensor of M [8]. It is easy to see that Rg∗
jmPm

i = −Hji. In

the case, using ∇g
jFim = −∇g

jFmi = ∇g
mFji, (2.3) becomes

∇g
h∇

g
jP

h
i = Rg

jmPm
i + Rg∗

jmPm
i ,

∇g
h∇

g
j (gmhFim) =

(
Rg

jm + Rg∗
jm

)
Pm
i ,

gmh∇g
h∇

g
jFim =

(
Rg

jm + Rg∗
jm

)
Pm
i ,

∇gm∇g
mFji =

(
Rg

jm + Rg∗
jm

)
Pm
i ,

which completes the proof. �

As a direct result of the Theorem 2.3, we have:

Corollary 2.4. In an integrable nearly paraKähler manifold (M, g, P ), Rg =
−Rg∗.

Proposition 2.5. In a nearly paraKähler manifold (M, g, P ), the Ricci* tensor
is hybrid with respect to the almost paracomplex structure P .

Proof. For the Ricci* tensor in a nearly paraKähler manifold (M, g, P ), we
have

Rg∗
ji = −HjmPm

i ,

−Rg∗
jnP

n
m = Hjm.

From this, with help of H(ij) = 0, we get

Hjm + Hmj = −Rg∗
jnP

n
m−Rg∗

mnP
n
j ,

0 = Rg∗
jnP

n
m + Rg∗

mnP
n
j .

Since Rg∗
mn = Rg∗

nm, we have

Rg∗
jnP

n
m = −Rg∗

nmPn
j . �
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Now, consider an almost paraHermitian manifold (M, g, P ), if the square

norm ‖∇gP‖2 of ∇gP , locally expressed by

‖∇gP‖2 = gijgmnglk(∇gP )lim(∇gP )kjn

is zero, then the almost paraHermitian manifold is an isotropic paraKähler
manifold. The isotropic paraKähler structure is analogue of the isotropic
Kähler structure originally introduced in [3]. In [7], authors studied the isotropy
property of antiKähler Codazzi manifolds. The similar problem can be taken
into account for the case of nearly paraKähler manifolds.

Theorem 2.6. In a nearly paraKähler manifold (M, g, P ), in order that Rg =
−Rg∗, it is necessary and sufficient that the nearly paraKähler manifold is an
isotropic paraKähler, where Rg and Rg∗ are respectively the Ricci tensor and
the Ricci* tensor of g.

Proof. In a nearly paraKähler manifold (M, g, P ), transvecting∇g
jFim =∇g

mFji

with F ji, it follows that (
∇g

jFim

)
F ji = 0

from which, by taking covariant derivative ∇g
k

∇g
k

{(
∇g

jFim

)
F ji

}
= 0,(

∇g
k∇

g
jFim

)
F ji +

(
∇g

jFim

)
(∇g

kF
ji) = 0,

(∇g
k∇

g
mFji)F

ji + (∇g
mFji)(∇g

kF
ji) = 0.

Multiplying the above last equation with gkm, we find

gkm (∇g
k∇

g
mFji)F

ji + gkm(∇g
mFji)(∇g

kF
ji) = 0,

(∇gm∇g
mFji)P

i
ng

nj + gkm(∇g
mP l

jgli)(∇
g
kP

i
ng

nj) = 0,

(∇gm∇g
mFji)P

i
ng

nj + gkmglig
nj(∇gP )lmj(∇

gP )ikn = 0,(
Rg

jm + Rg∗
jm

)
Pm
i P i

ng
nj + ‖∇gP‖2 = 0,(

Rg
jm + Rg∗

jm

)
gmj + ‖∇gP‖2 = 0.

Hence the proof is complete. �

2.2. A special metric connection

In this section, on a nearly paraKähler manifold (M, g, P ) we shall consider
a special linear connection ∇XY = ∇g

XY + S(X,Y ) satisfying some special
conditions, where S is a (1, 2)-tensor field.

Applying the covariant derivative ∇X to the fundamental 2-form F , we
obtain

(∇XF )(Y, Z)) = X (F (Y,Z))− F (∇XY,Z)− F (Y,∇XZ)

= X (F (Y,Z))− F (∇g
XY + S(X,Y ), Z)

− F (Y,∇g
XZ + S(X,Z))
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= X (F (Y, Z))− F (∇g
XY,Z)

− F (S(X,Y ), Z)− F (Y,∇g
XZ)− F (Y, S(X,Z))

= (∇g
XF )(Y, Z)− g(PS(X,Y ), Z)− g(PY, S(X,Z))

= (∇g
XF )(Y, Z) + g(S(X,Y ), PZ)− g(S(X,Z), PY )

= (∇g
XF )(Y, Z) + SP (X,Y, Z)− SP (X,Z, Y )

for any vector fields X,Y, Z on M , where SP (X,Y, Z) = g(S(X,Y ), PZ). From
on now, we consider a special linear connection ∇ which satisfies the following
conditions: i) ∇F = 0 and ii) SP (X,Y, Z) + SP (Z, Y,X) = 0. Hence, we can
write the followings:

(∇g
XF )(Y,Z) + SP (X,Y, Z)− SP (X,Z, Y ) = 0,

(∇g
Y F ) (Z,X) + SP (Y,Z,X)− SP (Y,X,Z) = 0,

(∇g
ZF ) (X,Y ) + SP (Z,X, Y )− SP (Z, Y,X) = 0,

from which

2SP (X,Y, Z) = (∇g
XF ) (Y,Z)− (∇g

Y F ) (Z,X) + (∇g
ZF ) (X,Y ) ,

2SP (X,Y, Z) = (∇g
XF ) (Y,Z) ,

−2g(PS(X,Y ), Z) = g((∇g
XP )Y,Z),

S(X,Y ) = − 1
2P (∇g

XP )Y.

Thus, we get the following theorem.

Theorem 2.7. On a nearly paraKähler manifold (M, g, P ), a special linear
connection ∇ is the linear connection having the covariant derivative given by

∇XY = ∇g
XY − 1

2
P (∇g

XP )Y

for any vector fields X,Y on M .

The following result follows immediately from Proposition 2.1 and Theorem
2.7.

Corollary 2.8. On an integrable nearly paraKähler manifold (M, g, P ), the
special linear connection ∇ is equal to ∇g.

Theorem 2.9. Let ∇ be the special linear connection on a nearly paraKähler
manifold (M, g, P ). Then

i) (∇XP )Y = 2(∇g
XP )Y ,

ii) T∇(X,Y ) = −P (∇g
XP )Y , where T∇ is the torsion tensor of ∇. More-

over, the (0, 3) torsion tensor field defined by

T∇(X,Y, Z) = g(T∇ (X,Y ) , Z)

satisfies:
T (PX, Y, Z) = T (X,PY,Z) = −T (X,Y, PZ) and

T (PX,PY, Z) = T (PX, Y, PZ) = −T (X,PY, PZ) ,



ON NEARLY PARAKÄHLER MANIFOLD 877

iii) (∇Xg)(Y, Z) = 0, i.e., ∇ is a metric connection with respect to g,
iv) R∇(X,Y )Z = Rg (X,Y )Z + 1

2 (∇XT ) (Y, Z)− 1
2 (∇Y T ) (X,Z)

+ 1
4T (X,T (Y, Z))− 1

4T (Y, T (X,Z))
for any vector fields X,Y, Z on M .

Proof. i) (∇XP )Y = ∇X (PY )− P (∇XY )

= ∇g
X (PY )− 1

2
P (∇g

XP )PY − P∇g
XY +

1

2
P 2 (∇g

XP )Y

= ∇g
X (PY )− P∇g

XY + (∇g
XP )Y

= 2 (∇g
XP )Y.

Here we used (∇g
XP )PY = −P (∇g

XP )Y.
ii)

T∇ (X,Y ) = ∇XY −∇Y X − [X,Y ](2.5)

= ∇g
XY − 1

2
P (∇g

XP )Y −∇g
Y X

+
1

2
P (∇g

Y P )X − [X,Y ]

= − 1

2
P [(∇g

XP )Y − (∇g
Y P )X]

= − P (∇g
XP )Y.

Using the above equation, it follows that

T (PX, Y, Z) = g (T (PX, Y ) , Z) = g (PT (X,Y ) , Z)

= −g (T (X,Y ) , PZ) = −T (X,Y, PZ) ,

T (PX, Y, Z) = g (T (PX, Y ) , Z) = g (T (X,PY ) , Z) = T (X,PY,Z)

and

T (PX,PY,Z) = g (T (PX,PY ) , Z) = g (−T (X,Y ) , Z) = −T (X,Y, Z) ,

T (PX, Y, PZ) = g (T (PX, Y ) , PZ) = g (PT (X,Y ) , PZ) = −T (X,Y, Z) ,

T (X,PY, PZ) = g (T (X,PY ) , PZ) = g (−PT (X,Y ) , PZ) = T (X,Y, Z) .

iii) With help of g ((∇g
XP )Y, Z) = −g (Y, (∇g

XP )Z), we find

(∇Xg) (Y, Z) = X (g (Y,Z))− g ( ∇g
XY,Z)− g (Y, ∇g

XZ)

= X (g (Y,Z))− g(∇g
XY − 1

2
P (∇g

XP )Y, Z)

− g(Y,∇g
XZ − 1

2
P (∇g

XP )Z)

= X (g (Y,Z))− g (∇g
XY,Z) +

1

2
g (P (∇g

XP )Y,Z)

+
1

2
g (Y, P (∇g

XP )Z)− g (Y,∇g
XZ)
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= (∇g
Xg) (Y, Z) +

1

2
g (P (∇g

XP )Y,Z) +
1

2
g (Y, P (∇g

XP )Z)

= − 1

2
g ((∇g

XP )PY,Z)− 1

2
g (PY, (∇g

XP )Z)

=
1

2
g (PY, (∇g

XP )Z)− 1

2
g (PY, (∇g

XP )Z)

= 0.

iv) By virtue of (2.5), for the special metric connection ∇, we have

∇XY = ∇g
XY +

1

2
T (X,Y )

for any vector fields X,Y on M . With help of this, we calculate the curvature
tensor field:

R∇(X,Y ), Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

= ∇X(∇g
Y Z +

1

2
T (Y, Z))−∇Y (∇g

XZ +
1

2
T (X,Z))

− (∇g
[X,Y ]Z +

1

2
T ([X,Y ] , Z))

= ∇g
X (∇g

Y Z) +
1

2
T (X,∇g

Y Z) +
1

2
∇g

X (T (Y, Z))

+
1

4
T (X,T (Y,Z))−∇g

Y (∇g
XZ)− 1

2
T (Y,∇g

XZ)

− 1

2
∇g

Y (T (X,Z))− 1

4
T (Y, T (X,Z)−∇g

[X,Y ]Z

− 1

2
T ([X,Y ] , Z)

= Rg (X,Y, Z) +
1

2
T (X,∇g

Y Z) +
1

2
∇g

X (T (Y,Z))

+
1

4
T (X,T (Y,Z))− 1

2
T (Y,∇g

XZ)− 1

2
∇g

Y (T (X,Z))

− 1

4
T (Y, T (X,Z))− 1

2
T ([X,Y ] , Z)

from which, using [X,Y ] = ∇g
XY −∇g

Y X

R∇(X,Y ), Z = Rg (X,Y )Z +
1

2
(∇XT ) (Y,Z)− 1

2
(∇Y T ) (X,Z)

+
1

4
T (X,T (Y,Z))− 1

4
T (Y, T (X,Z)) . �
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