L^2 -TRANSVERSE FIELDS PRESERVING THE TRANSVERSE RICCI FIELD OF A FOLIATION

JIN SUK PAK, YANG JAE SHIN AND HWAL LAN YOO

1. Introduction

Let (M, g_M, \mathcal{F}) be a (p+q)-dimensional connected Riemannian manifold with a foliation \mathcal{F} of codimension q and a complete bundle-like metric g_M with respect to \mathcal{F} . Let Ric_D be the transverse Ricci field of \mathcal{F} with respect to the transverse Riemannian connection D which is a torsion-free and g_Q -metrical connection on the normal bundle Q of \mathcal{F} . We consider transverse conformal (or, projective) fields of \mathcal{F} . It is clear that a transverse Killing field s of \mathcal{F} preserves the transverse Ricci field of \mathcal{F} , that is, $\Theta(s)Ric_D=0$, where $\Theta(s)$ denotes the transverse Lie differentiation with respect to s. The purpose of the present paper is to prove the following theorems:

THEOREM A. Let (M, g_M, \mathcal{F}) be a (p+q)-dimensional connected Riemannian manifold with a harmonic foliation \mathcal{F} of codimension $q \geq 2$ and a complete bundle-like metric g_M with respect to \mathcal{F} . If an L^2 -transverse conformal field s of \mathcal{F} with L^2 -charateristic function satisfies $\Theta(s)Ric_D=0$, then s is a transverse Killing field of \mathcal{F} .

THEOREM B. Let (M, g_M, \mathcal{F}) be as Theorem A. If an L^2 -transverse projective field s of \mathcal{F} with an L^2 -characteristic form ϕ_s satisfies $\Theta(s)$ $Ric_D = 0$, then s is a transverse Killing field of \mathcal{F} .

For compact M without boundary those were proved in [9]. The classical result of Ishihara [2] corresponds to the case of the point foliation on a compact Riemannian manifold without boundary: Let (M, g_M) be a connected, orientable and compact Riemannian manifold without boundary, and let Ric be the Ricci tensor field on M. If a conformal (or, projective) vector field Y on M satisfies $\Theta(Y)Ric = 0$,

Received September 8, 1993.

This paper is partially supported by TGRC-KOSEF.

then Y is a Killing vector field on M, where $\Theta(Y)$ denotes the Lie differentiation with respect to Y.

We shall be in C^{∞} -category and use the following convention on the range of indices: $1 \leq i, j, \dots \leq p, p+1 \leq \alpha, \beta, \dots \leq p+q$. The Einstein summation convention will be used with respect to those systems of indices.

2. Preliminaries

Let (M, g_M, \mathcal{F}) be (p+q)-dimensional connected foliated Riemannian manifold with a foliation \mathcal{F} of codimension q and a complete bundle-like metric g_M in the sense of Reinhart [12]. The foliation \mathcal{F} induces an integrable subbundle E of the tangent bundle TM over M. The quotient bundle Q = TM/E is called the normal bundle of \mathcal{F} . We denote by $\pi: TM \to Q$ the natural projection. The metric g_M defines a map $\sigma: Q \to TM$ with $\pi \circ \sigma = identity$ and induces a metric g_Q in Q ([3], [12]). We denote by D the transverse Riemannian connection in Q which is torsion free and metrical with respect to g_Q ([3], [6], [12]).

In a flat chart $U(x^i, x^{\alpha})$ with respect to \mathcal{F} ([12]), a local frame field $\{X_i, X_{\alpha}\} = \{\partial/\partial x^i, \partial/x^{\alpha} - A_{\alpha}^j \partial/\partial x^j\}$ is called the basic adapted frame field of \mathcal{F} ([12], [15]). Here A_{α}^j are functions on U with $g_M(X_i, X_{\alpha}) = 0$. It is trivial that X_i (resp. X_{α} spans $\Gamma(E|_U)$ (resp. $\Gamma(E^{\perp}|_U)$), where $E^{\perp} = \sigma(Q)$ denotes the orthogonal complement bundle of E in TM. Hereafter, we omit the term $|_U$ for simplicity. We set that $g_{ij} = g(X_i, X_j)$, $g_{\alpha\beta} = g(X_{\alpha}, X_{\beta})$, $(g^{ij}) = (g_{ij})^{-1}$, and $(g^{\alpha\beta}) = (g_{\alpha\beta})^{-1}$.

Then we have

LEMMA 1. ([15]) It holds that $D_{X_i}\pi(X_\alpha)=0$, $D_{X_i}D_{X_\alpha}\pi(X_\beta)=0$ and $D_{X_\alpha}\pi(X_\beta)=D_{X_\beta}\pi(X_\alpha)$.

LEMMA 2. ([15]) It holds that $[X_{\alpha}, X_{\beta}] \in \Gamma(E)$.

The curvature R_D of D is defined by $R_D(X,Y)t = D_XD_Yt - D_YD_Xt - D_{[X,Y]}t$ for any $X,Y \in \Gamma(TM)$ and $t \in \Gamma(Q)$. We notice that $i(X)R_D = 0$, where i(X) denotes the interior product with respect to $X \in \Gamma(E)$. Thus, for any $u,v \in \Gamma(Q)$, the operator $R_D(u,v)$: $\Gamma(Q) \to \Gamma(Q)$ is a well-defined endomorphism ([3]), that is, $R_D(u,v)t = D_{\sigma(u)}D_{\sigma(v)}t - D_{\sigma(v)}D_{\sigma(u)}t - D_{[\sigma(u),\sigma(v)]}t$. The Ricci operator ρ_D of \mathcal{F}

is given by $\rho_D(t) = g^{\alpha\beta}R_D(t, \pi(X_\alpha))\pi(X_\beta)$ ([3]), and the transverse Ricci field Ric_D of \mathcal{F} is defined by

$$Ric_D(t, u) = g_Q(\rho_D(t), u)$$

for any $t, u \in \Gamma(Q)$.

We set

$$V(\mathcal{F}) = \{Y \in \Gamma(TM) | [X, Y] \in \Gamma(E) \text{ for any } X \in \Gamma(E) \}.$$

An element of $V(\mathcal{F})$ is called an infinitesimal automorphism of \mathcal{F} ([3]). We set

$$\overline{V}(\mathcal{F}) = \{ s \in \Gamma(Q) | s = \pi(Y) \ and \ Y \in V(\mathcal{F}) \}.$$

The transverse Lie differentiation $\Theta(s)$ with respect to $s = \pi(Y) \in \overline{V}(\mathcal{F})$ is given by

$$\Theta(s)t = \pi([Y, Y_t])$$

for any $t \in \Gamma(Q)$ with $\pi(Y_t) = t$ and $Y_t \in \Gamma(TM)$ ([3],[6]).

LEMMA 3. ([11])
$$(\Theta(s)D)_{[X_{\alpha},X_{\beta}]}\pi(X_{\gamma})=0$$
 for any $s\in \overline{V}(\mathcal{F})$.

The transverse divergence $div_D t$ of $t \in \Gamma(Q)$ with respect to D is given by

$$div_D t = q^{\alpha\beta} q_O(D_{X_\alpha} t, \pi(X_\beta))$$

and the transverse gradient $grad_D f$ of a function f is given by

$$grad_D f = g^{\alpha\beta} X_{\alpha}(f) \pi(X_{\beta})$$

([3], [9]).

For any $s = \pi(Y) \in \overline{V}(\mathcal{F})$, we have an operator $A_D(s) : \Gamma(Q) \to \Gamma(Q)$ defined by

$$A_D(s) = \Theta(s) - D_Y$$

([3]).

DEFINITION. ([3], [7], [15]) If $s \in \overline{V}(\mathcal{F})$ satisfies $\Theta(s)g_Q = 2f_sg_Q$, where f_s is a function on M, then s is called a transverse conformal field (t. c. f.) of \mathcal{F} and f_s the characteristic function of s. If $s \in \overline{V}(\mathcal{F})$

satisfies $\Theta(s)g_Q = 0$, then s is called a transverse Killing field (t. K. f.) of \mathcal{F} . If $s \in \overline{V}(\mathcal{F})$ satisfies

$$(\Theta(s)D)_X t = \phi_s(X)t + \phi_s(\sigma(t))\pi(X)$$

for any $X \in \Gamma(TM)$ and $t \in \Gamma(Q)$, where ϕ_s is a 1-form on M, then s is called a transverse projective field (t. p. f.) of \mathcal{F} and ϕ_s the characteristic form of s. If $s \in \overline{V}(\mathcal{F})$ satisfies $\Theta(s)D = 0$, then s is called a transverse affine field (t. a. f.) of \mathcal{F} .

PROPOSITION 1. ([9]) If s is a t.c.f. of \mathcal{F} with characteristic function f_s , then div_{Ds} is a foliated function on M (i.e., dvi_{Ds} has constant values on leaves) and $div_{Ds} = qf_s$.

PROPOSITION 2. ([9]) If s is a t.p.f. of \mathcal{F} with characteristic form ϕ_s , then $div_D s$ is a foliated function on M, $d(div_D s) = (q+1)\phi_s$ and $\phi_s(X) = 0$ for any $X \in \Gamma(E)$.

PROPOSITION 3. ([9]) If s is a t.c.f. of \mathcal{F} with characteristic function f_s , then it holds that

$$(\Theta(s)D)_{X_{\alpha}}\pi(X_{\beta}) = \{X_{\alpha}(f_s)\delta^{\varepsilon}_{\beta} + X_{\beta}(f_s)\delta^{\varepsilon}_{\alpha} - X_{\gamma}(f_s)g_{\alpha\beta}g^{\gamma\varepsilon}\}\pi(X_{\varepsilon})$$

where δ^{α}_{β} denotes the Kronecker delta.

Let ∇^M be the Levi-Civita connection with respect to g_M . Then an operator $\Delta_D: \Gamma(Q) \to \Gamma(Q)$ is defined by

$$\Delta_D s = -g^{\alpha\beta} (D_{X_\alpha} D_{X_\beta} s - D_{\nabla^{M}_{X_\alpha} X_\beta} s) - g^{ij} (D_{X_i} D_{X_j} s - D_{\nabla^{M}_{X_i} X_j} s)$$

for any $s \in \Gamma(Q)$ ([5], [10]).

PROPOSITION 4. ([9]) Let $s \in \overline{V}(\mathcal{F})$. If s is a t.a.f. of \mathcal{F} , then $\Delta_D(s) = D_{\sigma(\tau)}s + \rho_D(s)$ and $d(div_D s) = 0$, where τ is the tension field defined by $\tau = -g^{ij}(D_{X_i}\pi)(X_j)$.

PROPOSITION 5. ([5], [13]) Let (M, g_M, \mathcal{F}) be a Riemannian manifold with a foliation \mathcal{F} of codimension q and a bundle-like metric g_M with respect to \mathcal{F} , and let Δ be the Laplace-Beltrami operator acting on functions on M. Then it holds the following decomposition of Δ :

$$\Delta f = \Box' f + \Box''_0 f + Hf$$
 for any function f on M .

In Proposition 5, an operator \square' is defined by $\square' f = -g^{ij} X_i(X_j f) + g^{ij} (\nabla^M_{X_i} X_j)_E f$, where ()_E denotes the E-component of (). If f is a foliated function on M, then we have that

$$\Delta f = \square_0'' f + H f,$$

where $\Box_0'' f = -g^{\alpha\beta} X_{\alpha}(X_{\beta} f) + g^{\alpha\beta} (\nabla_{X_{\alpha}} X_{\beta})_{E^{\perp}} f$.

Now we consider L^2 -transverse field on a complete, non-compact foliated Riemannian manifolds such that the foliation is harmonic and deal with connected and orientable manifolds without boundary.

Let Q^* the dual bundle of Q and its connection be denoted by D^* . Then Q^* has the metric induced from g_Q .

Let $\Lambda^r(M)$ be the space of all r-forms on M and let the exterior derivative $d: \Lambda^r(M) \to \Lambda^{r+1}(M)$ have the formal adjoint operator δ defined by $\delta = (-1)^{(p+q)(r+1)+1} * d* : \Lambda^r(M) \to \Lambda^{r-1}(M)$.

Let $\Gamma_0(Q)$ (resp. $\Gamma_0(Q^*)$) be the space of all sections of Q (resp. Q^*) with compact supports and let $L^2(Q)$ (resp. $L^2(Q^*)$) be the completion of $\Gamma_0(Q)$ with respect to the global scalar product <<, >>.

DEFINITION. ([14], [16]) An element $s \in L^2(Q) \cap \Gamma(Q)$ is called an L^2 -transverse field of \mathcal{F} .

If t is an L^2 -transverse field of \mathcal{F} , then the dual \overline{t} of t, that is, $\overline{t}(\cdot,\cdot) = q_O(t,\cdot)$ belongs to $L^2(Q^*) \cap \Gamma(Q^*)$.

Let x_0 be a fixed point of M and $\rho(x)$ the geodesic distance from x_0 to $x \in M$. We set

$$B(2k) = \{x \in M | \rho(x) \le 2k\}$$

for any k > 0. We consider a differentiable function μ on R which satisfies the following properties:

$$\left\{ \begin{array}{ll} 0 \leq \mu(y) \leq 1 & \text{on } R, \\ \mu(y) = 1 & \text{for } y \leq 1, \\ \mu(y) = 0 & \text{for } y \geq 2. \end{array} \right.$$

We define a family $\{\omega_k\}$ of Lischitz continuous functions on M

$$\omega_k(x) = \mu(\frac{\rho(x)}{k}), \quad k = 1, 2, \cdots$$

for any $x \in M$. Then the family $\{\omega_k\}$ has the following properties:

$$\begin{cases} 0 \leq \omega_k(x) \leq 1 & \text{for } x \in M, \\ supp \omega_k \subset B(2k), \\ \omega_k(x) = 1 & \text{for } x \in B(k), \\ \lim_{k \to \infty} \omega_k = 1, \\ |d\omega_k| \leq Ck^{-1} & \text{almost everywhere on } M, \end{cases}$$

where C is a positive constant independent of k ([14]).

Let $\widetilde{\Gamma}(Q^*) = \{ \eta \in \Gamma(Q^*) | D_X^* \eta = 0 \text{ for any } X \in \Gamma(E) \}$ and let $\{ t_{\alpha} \}$ be the frame on Q such that $\pi(X_{\alpha}) = t_{\alpha}$, and let $\{ \tilde{t}_{\alpha} \}$ be the dual frame to $\{ t_{\alpha} \}$, that is, $\tilde{t}^{\alpha}(u) = g_Q(t_{\alpha}, u)$ for all $u \in \Gamma(Q)$. Then we notice that $D_X^* \tilde{t}^{\alpha} = 0$ for any $X \in \Gamma(E)$. Moreover, we remark that for any $s \in L^2(Q) \cap \overline{V}(\mathcal{F})$ and $\eta \in L^2(Q^*) \cap \widetilde{\Gamma}(Q^*)$, $\omega_k s \to s$ and $\omega_k \eta \to \eta$ as $k \to \infty$ in the strong sense.

The foliation \mathcal{F} is said to be harmonic if $g^{ij}\pi(\nabla^M_{X_i}X_j)=0$, that is, $\tau=0$. On the other hand $H=g^{ij}(\nabla^M_{X_i}X_j)_{E^{\perp}}=g^{ij}$. $\{E^{\perp}$ -component of $\nabla^M_{X_i}X_j\}$ is the mean curvature vector field of each leaf of \mathcal{F} . Thus harmonic foliation \mathcal{F} means that all leaves of \mathcal{F} are minimal submanifolds of M.

We finally introduce some lemmas for later use.

LEMMA 4. ([17]) Let (M, g_M, \mathcal{F}) be a complete, non-compact foliated Riemannian manifold with a harmonic foliation \mathcal{F} . Then

$$\int_{B(2k)} di v_D(\omega_k s) dS = 0$$

for any $s \in \Gamma(Q)$, where dS denotes the volume element of B(2k).

LEMMA 5. ([1]) Let (M, g_M, \mathcal{F}) be as Lemma 4. Let $s \in \overline{V}(\mathcal{F})$ be an L^2 -transverse field of \mathcal{F} . Then s is a t.K.f. of \mathcal{F} if and only if $\Delta_D(s) = \rho_D(s)$ and $div_D s = 0$.

LEMMA 6. ([8]) Let (M, g_M, \mathcal{F}) be a (p+q)-dimensional connected Riemannian manifold with a harmonic foliation \mathcal{F} of codimension $q \geq 3$ and a complete bundle-like metric g_M with respect to \mathcal{F} . Let $s \in \overline{V}(\mathcal{F})$ be an L^2 -transverse field of \mathcal{F} . Then the following properties are equivalent:

- (1) s is a transverse Killing field;
- (2) s is a transversally divergence-free Jacobi field;
- (3) s is a transverse affine field.

3. Main theorems

Using some lemmas and propositions in the preliminaries, we obtain the following theorems.

THEOREM A. Let (M, g_M, \mathcal{F}) be a (p+q)-dimensional connected Riemannian manifold with a harmonic foliation \mathcal{F} of codimension $q \geq 2$ and a complete bundle-like metric g_M with respect to \mathcal{F} . If an L^2 -transverse conformal field s of \mathcal{F} with L^2 -characteristic function satisfies $\Theta(s)Ric_D=0$, then s is a transverse Killing field of \mathcal{F} .

Proof. Let $s \in \overline{V}(\mathcal{F})$ be an L^2 -t.c.f. of \mathcal{F} with L^2 -characteristic function f_s . Then it follows that

$$g^{\gamma\varepsilon}(\Theta(s)Ric_D)(\pi(X_\gamma),\pi(X_\varepsilon))=2(q-1)\square_0''f_s$$

(cf. [11, p. 171]). So we obtain directly $\square_0'' f_s = 0$ by the assumption $\Theta(s)Ric_D = 0$ and $q \ge 2$.

Since \mathcal{F} is harmonic and f_s is a foliated function on M, by means of Proposition 5 we have $\Delta f_s = 0$ so that f_s is constant on M. In fact, we have

$$0 = << \Delta f_s, \omega_k^2 f_s >>_{B(2k)}$$

$$= << \omega_k df_s, \omega_k df_s >>_{B(2k)} + 2 << \omega_k df_s, f_s d\omega_k >>_{B(2k)}$$

$$\geq \|\omega_k df_s\|_{B(2k)}^2 - 2\|\omega_k df_s\|_{B(2k)} \|f_s d\omega_k\|_{B(2k)}$$

$$\geq \frac{3}{4} \|\omega_k df_s\|_{B(2k)}^2 - \frac{4C^2}{k^2} \|f_s\|_{B(2k)}^2.$$

Since f_s is an L^2 -function on M, we have $df_s = 0$ as $k \to \infty$. Therefore f_s is constant on M. Moreover, for any t.c.f. s we have

$$div_D(\omega_k s) = \omega_k q f_s + g_Q(s, grad_D \omega_k)$$

by means of Proposition 1. Thus we obtain

$$\begin{split} &\int_{B(2k)} div_D(\omega_k s) dS \geq q f_s \int_{B(2k)} \omega_k dS - \int_{B(2k)} |s| |grad_D \omega_k| dS \\ &\geq q f_s \int_{B(2k)} \omega_k dS - \frac{C}{k} \int_{B(2k)} |s| dS. \end{split}$$

From Lemma 4, we get $f_s \leq 0$ as $k \to \infty$.

Since $0 = \int_{B(2k)} div_D(\omega_k s) dS \leq q f_s \int_{B(2k)} \omega_k dS + \frac{C}{k} \int_{B(2k)} |s| dS$, we obtain $f_s \geq 0$ as $k \to \infty$. And hence f_s vanishes identically. Thus s is a t.K.f. of \mathcal{F} .

THEOREM B. Let (M, g_M, \mathcal{F}) be as Theorem A. If an L^2 -transverse projective field s of \mathcal{F} with an L^2 -characteristic form ϕ_s satisfies $\Theta(s)$ $Ric_D = 0$, then s is a transverse Killing field of \mathcal{F} .

Proof. For any t.p.f. $s = \pi(Y) \in \overline{V}(\mathcal{F})$ with characteristic form ϕ_s , it follows that

$$g^{\gamma \varepsilon}(\Theta(s)Ric_D)(\pi(X_{\gamma}), \pi(X_{\varepsilon})) = (q-1)\{\delta(\phi_s) - \phi_s(H)\}$$

(cf. [10, p.173]). Since \mathcal{F} is harmonic, $q \geq 2$ and $\Theta(s)Ric_D = 0$, we have $\delta \phi_s = 0$, which together with Proposition 2 implies

$$0 = \delta \phi_s = \frac{1}{q+1} \delta d(div_D s) = \frac{1}{q+1} \Delta (div_D s).$$

Since ϕ_s is an L^2 -form on M, div_{DS} is also an L^2 -function on M. If we recall the fact in the process of the proof of Theorem A, then div_{DS} is constant on M. To use Proposition 2 one more time, we have that $\phi_s = 0$, namely, s is a t.a.f. of \mathcal{F} . By means of Proposition 6, we see that s is a t.K.f. of \mathcal{F} .

References

- T. Aoki and S. Yorozu, L²-transverse conformal and Killing fields on complete foliated Riemannian manifolds, Yokohama Math. J. 36 (1988), 27-41.
- 2. S. Ishihara, Groups of projective transformations and groups of conformal transformations, J. Math. Soc. Japan 9 (1957), 195-221.
- 3. F. W. Kamber and Ph. Tondeur, Infinitesimal automorphisms and second variation of the energy for harmonic foliations, Tohoku Math. J. 34 (1982), 525-538.
- F. W. Kamber, Ph. Tondeur and Gabor Toth, Transversal Jacobi fields for harmonic foliations, Michigan Math. J. 34 (1987), 261-266.
- 5. T. H. Kang, H. Kitahara and J. S. Pak, A formula for the radial part of the Laplace-Beltrami operator on the Riemannian foliation, Ann. Sci. Kanazawa Univ. 28 (1991), 1-8.
- P. Molino, Feuilletages riemanniens sur les variétés compactes champs de Killing transverse, C.R. Acad. Sc. Paris 289 (1979), 421-423.
- P. Molino, Géométic global des feuilletages riemanniens, Proc. Kon. Nd. Afad. Al. 85 (1982), 45-76.
- S. Nishikawa and Ph. Tondeur, Transversal infin:tesimal automorphisms of harmonic foliations on complete manifolds, Ann. Global Anal. Geom. 7 (1989), 47-57.
- J. S. Pak and S. Yorozu, Transverse fields on foliated Riemannian manifolds,
 J. Korean Math. Soc. 25 (1988), 83-92.
- J. S. Pak and S. Yorozu, The Laplace-Beltrami operator on a Riemannian manifold with a Clairaut foliation, Ann. Sci. Kanazawa Univ. 26 (1989), 13-15.
- J. H. Park and S. Yorozu, Transverse fields preserving the transverse Ricci field of a foliation, J. Korean Math. Soc. 27 (1990), 167-175.
- B. L. Reinhart, Foliated manifolds with bundle-like metrics, Ann. of Math. 69 (1959), 119-132.
- R. Takagi and S. Yorozu, Notes on the Laplace-Beltrami operator on a foliated Riemannian manifold with a bundle-like metric to appear in Nihonkai Math. J..
- S. Yorozu, Killing vector fields on complete Riemannian manifolds, Proc. Amer. Math. Soc. 84 (1982), 115-120.
- S. Yorozu, Behavior of geodesics in foliated manifolds with Bundle-like metric,
 J. Math, Soc. Japan 35 (1983), 251-272.
- S. Yorozu, The nonexistence of Killing fields, Tohoku Math. J. 36 (1984), 99-105.
- S. Yorozu and T. Tanemura, Green's theorem on a foliated Riemannian manifold and its applications, Acta Math. Hung. 56(3-4) (1990), 239-245.

Jin Suk Pak and Hwal Lan Yoo Department of Mathematics Teachers College Kyungpook National University Taegu, 702-701, Korea

Yang Jae Shin Department of Mathematics Education Teachers College Kyungnam University Masan, 631-701, Korea