• 제목/요약/키워드: metric approximation property

Search Result 5, Processing Time 0.017 seconds

THE SEPARABLE WEAK BOUNDED APPROXIMATION PROPERTY

  • Lee, Keun Young
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.1
    • /
    • pp.69-83
    • /
    • 2015
  • In this paper we introduce and study the separable weak bounded approximation properties which is strictly stronger than the approximation property and but weaker than the bounded approximation property. It provides new sufficient conditions for the metric approximation property for a dual Banach space.

The metric approximation property and intersection properties of balls

  • Cho, Chong-Man
    • Journal of the Korean Mathematical Society
    • /
    • v.31 no.3
    • /
    • pp.467-475
    • /
    • 1994
  • In 1983 Harmand and Lima [5] proved that if X is a Banach space for which K(X), the space of compact linear operators on X, is an M-ideal in L(X), the space of bounded linear operators on X, then it has the metric compact approximation property. A strong converse of the above result holds if X is a closed subspace of either $\elll_p(1 < p < \infty) or c_0 [2,15]$. In 1979 J. Johnson [7] actually proved that if X is a Banach space with the metric compact approximation property, then the annihilator K(X)^\bot$ of K(X) in $L(X)^*$ is the kernel of a norm-one projection in $L(X)^*$, which is the case if K(X) is an M-ideal in L(X).

  • PDF

A NOTE ON M-IDEALS OF COMPACT OPERATORS

  • Cho, Chong-Man;Kim, Beom-Sool
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.683-687
    • /
    • 1998
  • Suppose X is a subspace of $(\sum_{n=1} ^{\infty} X_n)_{c_0}$, dim $X_n<{\infty}$, which has the metric compact approximation property. It is proved that if Y is a Banach space of cotype q for some $2{\leq}1<{\infty}$ then K(X,Y) is an M-ideal in L(X,Y).

  • PDF

HEREDITARY PROPERTIES OF CERTAIN IDEALS OF COMPACT OPERATORS

  • Cho, Chong-Man;Lee, Eun-Joo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.41 no.3
    • /
    • pp.457-464
    • /
    • 2004
  • Let X be a Banach space and Z a closed subspace of a Banach space Y. Denote by L(X, Y) the space of all bounded linear operators from X to Y and by K(X, Y) its subspace of compact linear operators. Using Hahn-Banach extension operators corresponding to ideal projections, we prove that if either $X^{**}$ or $Y^{*}$ has the Radon-Nikodym property and K(X, Y) is an M-ideal (resp. an HB-subspace) in L(X, Y), then K(X, Z) is also an M-ideal (resp. HB-subspace) in L(X, Z). If L(X, Y) has property SU instead of being an M-ideal in L(X, Y) in the above, then K(X, Z) also has property SU in L(X, Z). If X is a Banach space such that $X^{*}$ has the metric compact approximation property with adjoint operators, then M-ideal (resp. HB-subspace) property of K(X, Y) in L(X, Y) is inherited to K(X, Z) in L(X, Z).

Operators in L(X,Y) in which K(X,Y) is a semi M-ideal

  • Cho, Chong-Man
    • Bulletin of the Korean Mathematical Society
    • /
    • v.29 no.2
    • /
    • pp.257-264
    • /
    • 1992
  • Since Alfsen and Effors [1] introduced the notion of an M-ideal, many authors [3,6,9,12] have worked on the problem of finding those Banach spaces X and Y for which K(X,Y), the space of all compact linear operators from X to Y, is an M-ideal in L(X,Y), the space of all bounded linear operators from X to Y. The M-ideal property of K(X,Y) in L(X,Y) gives some informations on X,Y and K(X,Y). If K(X) (=K(X,X)) is an M-ideal in L(X) (=L(X,X)), then X has the metric compact approximation property [5] and X is an M-ideal in $X^{**}$ [10]. If X is reflexive and K(X) is an M-ideal in L(X), then K(X)$^{**}$ is isometrically isomorphic to L(X)[5]. A weaker notion is a semi M-ideal. Studies on Banach spaces X and Y for which K(X,Y) is a semi M-ideal in L(X,Y) were done by Lima [9, 10].

  • PDF