• Title/Summary/Keyword: methyl viologen (MV)

Search Result 35, Processing Time 0.021 seconds

Methyl Viologen Mediated Oxygen Reduction in Ethanol Solvent: the Electrocatalytic Reactivity of the Radical Cation

  • Lin, Qianqi;Li, Qian;Batchelor-McAuley, Christopher;Compton, Richard G.
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.71-80
    • /
    • 2013
  • The study of methyl viologen ($MV^{2+}$) mediated oxygen reduction in electrolytic ethanol media possesses potential application in the electrochemical synthesis of hydrogen peroxide mainly due to the advantages of the much increased solubility of molecular oxygen ($O_2$) and high degree of reversibility of $MV^{2+/{\bullet}+}$ redox couple. The diffusion coefficients of both $MV^{2+}$ and $O_2$ were investigated via electrochemical techniques. For the first time, $MV^{2+}$ mediated $O_2$ reduction in electrolytic ethanol solution has been proved to be feasible on both boron-doped diamond and micro-carbon disc electrodes. The electrocatalytic response is demonstrated to be due to the radical cation, $MV^{{\bullet}+}$. The homogeneous electron transfer step is suggested to be the rate determining step with a rate constant of $(1{\pm}0.1){\times}10^5M^{-1}s^{-1}$. With the aid of a simulation program describing the EC' mechanism, by increasing the concentration ratio of $MV^{2+}$ to $O_2$ electrochemical catalysis can be switched from a partial to a 'total catalysis' regime.

Association of Methyl Viologen and Its Cationic Radical with Sodium Dodecyl Sulfate

  • Park, Joon-Woo;Nam, Hye-L.
    • Bulletin of the Korean Chemical Society
    • /
    • v.5 no.5
    • /
    • pp.182-187
    • /
    • 1984
  • The polarographic and conductometric studies of methyl viologen $(MV^{++})$ solutions with varying concentration of sodium dodecyl sulfate (SDS) showed strong association of $MV^{++}$ and its cationic radical, $MV^+$., with SDS below the critical micelle concentration. The stoichiometries of these associations were found to be their electric charge ratios. Both electrostatic and hydrophobic interactions were found to contribute to the associations. The formation constant of$MV^+.DS^-$ in 0.1 M NaCl was $7{\times}10^3M$. The $MV^{++}$-SDS association was observed to be cooperative leading to formation of large aggregates. In the presence of $MV^{++}$, the micellization of SDS was formation of SDS homo-micelle without direct involvement of $MV^{++}$.

Channel Electrode Voltammetric and In Situ Electrochemical ESR Studies of Comproportionation of Methyl Viologen in Acetonitrile

  • Lee, Ji U;John C. Eklund;Robert A. W. Dryfe;Richard G. Compton
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.2
    • /
    • pp.162-167
    • /
    • 1996
  • Two redox processes of methyl viologen (+2/+, +/0) in acetonitrile were investigated by using channel electrode voltammetric and in situ electrochemical ESR methods. Two separated unequal plateau currents of the first (+2/+) and second (+/0) redox processes of the viologen were observed in the channel electrode voltammograms and showed a cube-root depedndence on the electrolyte flow rate, respectively. The simple Levich analysis resulted in two different diffusion coefficients of $D_{+2}=2.2{\times}10^{-5}\;cm^2/s$ and $D_+=3.0{\times}10^{-5}cm^2/s$ from the limiting currents. In situ electrochemical ESR studies were performed for the monocation radicals generated at the potentials of the two plateau currents in the electrolyte flow range $1.3{\times}10^{-1}{\geq}v_f{\geq}2.7{\times}10^{-3}\;cm^3/s$. Backward implicitfinite difference method was employed to simulate the electrochemical kinetic problem of two sequential electron transfers ($MV^{+2}+e{\leftrightarrows}MV^+,\;MV^{+}+e{\leftrightarrows}MV^0$) coupled with reversible comproportionation ($MV^{2+}+MV^0{{\leftrightarrows}^{k_f}_{k_b}}2MV^+$). $k_f$ was found to be greater than ($10^6M^{-1}s^{-1}.

Decrease of Photochemical Efficiency Induced by Methyl Viologen in Rice(Oryza sativa L.) Leaves is Partly due to the Down-Regulation of PSII

  • Kim, Jin-Hong;Lee, Choon-Hwan
    • Journal of Photoscience
    • /
    • v.9 no.3
    • /
    • pp.65-70
    • /
    • 2002
  • In the rice leaves treated with methyl viologen (MV), the photochemical efficiency of PSII (or $F_{v/}$F $m_{m}$) was significantly decreased, and significant portion of the photoinactivation process was reversible during the dark-recovery. The dark-reactivation process was relatively slow, reaching its plateau after 2-2.5 h of dark incubation. The damaged portion of functional PSII was 13%, based on the value of I/ $F_{o}$- I/ $F_{m}$ after this dark-recovery period. The reversible photoinactivation process of PSII function in the MV-treated leaves consisted of a xanthophyll cycle-dependent development of NPQ and a xanthophyll cycle-independent process. The latter process was reversible in the presence of nigericin. As well as the increase in the values of Chl fluorescence parameters, the epoxidation process during the dark-recovery after the MV-induced photooxidation was very slow. These results suggest that the photooxidative effect of MV is partly protected by the down-regulation of PSII before inducing physical damages in core proteins of PSII.I.I.I.I.

  • PDF

Resistance of SOD2-transgenic petunia line to oxidative stress

  • Lee, Su-Young;Han, Bong-Hee;Kim, Yeong-Tae;Kim, Jin-Seog
    • Journal of Plant Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.562-566
    • /
    • 2010
  • SOD2-transgenic $T_3$ petunia line (A2-36-2-1-1-35) was treated with different levels of methyl viologen (MV) to determine its resistance to oxidative stress. Four (4) levels of MV (0, 100, 200, and $400\;{\mu}M$) were applied. The SOD2-transgenic $T_3$ petunia line exhibited a very significant oxidative stress resistance at the highest MV concentration ($400\;{\mu}M$) treatment compared to non-transgenic plant. RNA and protein expression of SOD2 transgene and higher parenchyma cell density in the transgenic petunias exhibiting resistance to oxidative stress proves its contribution to the expression of its resistance to oxidative stress.

Enhanced Tolerance to Oxidative Stress of Transgenic Potato (cv. Superior) Plants Expressing Both SOD and APX in Chloroplasts (SOD와 APX를 동시에 엽록체에 발현시킨 형질전환 감자 (cv. Superior)의 산화스트레스 내성 증가)

  • Tang, Li;Kwon, Suk-Yoon;Kim, Myoung-Duck;Kim, Jin-Seog;Kwak, Sang-Soo;Lee, Haeng-Soon
    • Journal of Plant Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.299-305
    • /
    • 2007
  • Oxidative stress is a major damaging factor for plants exposed to environmental stresses. Previously, we have generated transgenic potato (cv. Superior) plants expressing both CuZnSOD and APX genes in chloroplast under the control of an oxidative stress-inducible SWPA2 promoter (referred to as SSA plants) and selected the transgenic potato plant lines with tolerance against methyl viologen (MV)-mediated oxidative stress. When leaf discs of SSA plants were subjected to $3{\mu}M$ methyl viologen (MV), they showed approximately 40% less damage than non-transgenic (NT) plants. SSA plantlets were treated with $0.3{\mu}M$ MV stress, SSA plants also exhibited reduced damage in root growth. When 350 MV was sprayed onto the whole plants, SSA plants showed a significant reduction in visible damage, which was approximately 75% less damage than leaves of NT plants. These plants will be used for further analysis of tolerance to environmental stresses, such as high temperature and salt stress. These results suggest that transgenic potato (cv. Superior) plants would be a useful plant crop for commercial cultivation under unfavorable growth conditions.

Electrocheimical Evaluation of the Reaction Rafe and Electrochemical Optimization of the Mediated Electrochemical Reduction of NAD$^+$

  • Kang, Young-Wan;Kim, So-Hyoung;Kang, Chan;Yun, Sei-Eok
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2000.10a
    • /
    • pp.181-188
    • /
    • 2000
  • The electrocatalytic reduction of NAD$^{+}$ using diaphorase was studied. methyl viologen (MV$^{2+}$) mediator between an electrode and the enzyme. Steady-state currents could be obtained under the conditions of slow scan rate, low MV$^{2+}$concentration, and high NAD$^{+}$ concentration as the electrode reaction was converted to an electrochemical-catalytic (EC') reaction. The biomecular rate constant for the reaction of the reduced methyl viologen with the oxidized diaphorase was estimated as 7.5$\times$10$^3$M$^{-1}$ s$^{-1}$ from the slope of the current versus [MV$^{2+}$] plot. And the optimal concentrations of diaphorase, MV$^{2+}$ and NAD$^{+}$ in the mediated electrocatalytic reduction of NAD$^{+}$ were decided by applying the cyclic voltammetry. The optimal concentrations of the species were obtained by finding the conditions which gave the highest and steady-state current at a gold-amalgam electrode. The highest and steady-state catalytic current was achieved under the conditions of 1.5 U/ml diaphorase, 0.2 mM MV$^{2+}$, and 4.8 mM NAD$^{+}$ at the scan rate of 2 mV s$^{-1}$ , suggesting that the rate of the electrocatalytic reation is the higest under the former conditions. The electrochemical procedure under the conditions of 1.5 U/ml diaphorase,0.2 mM MV$^{2+}$, and 4.8 mM NAD$^{+}$ was used favorably to drive an enzymatic reduction of pyruvate to D-lactate.

  • PDF

In vivo Monitoring of the Incorporation of Chemicals into Cucumber end Rice Leaves by Chlorophyll Fluorescence Imaging

  • Kim, Jin-Hong;Jung, Ji-Eun;Lee, Choon-Hwan
    • Journal of Plant Biotechnology
    • /
    • v.4 no.4
    • /
    • pp.171-178
    • /
    • 2002
  • Chlorophyll (Chl) fluorescence imaging was used to investigate the effectiveness of in vivo incorporation methods for two chemicals, 3-(3',4'-dichlorophenyl)-1,1-dimethylurea (DCMU) and methyl viologen (MV) in rice, a monocot, and cucumber, a dicot, leaves. four different methods (vacuum infiltration, floating, transpiration-aided incorporation through petiole and spraying) were compared, and $F_i$ and $F_v$/$F_m$ were chosen for the imaging of the DCMU- and MV-treated leaves, respectively. The effects of the chemicals in plants were generally heterogeneous over the whole leaf area. Moreover, the effectiveness of the treatment of a chemical in plant leaves was dependent on chemical species, plant species, concentration of the chemical, the treatment method, the duration of the treatment, the existence of light and detergent, etc. In conclusion, we suggest that to achieve the proposed effects of chemicals in plants for an actual experiment, these factors must be considered before the chemical treatment, and the best method for the treatment of the chemicals tested was floating and vacuum infiltration in the dicot and the monocot leaves, respectively, as drawn from Chl fluorescence imaging analysis.

Selection of Transgenic Potato Plants Expressing NDP Kinase 2 Gene with Enhanced Tolerance to Oxidative Stress (NDP Kinase 2 유전자를 도입한 산화스트레스 내성 형질전환 감자의 선발)

  • Li, Tang;Kwon, Suk-Yoon;Yun, Dae-Jin;Kwak, Sang-Soo;Lee, Haeug-Soon
    • Journal of Plant Biotechnology
    • /
    • v.31 no.3
    • /
    • pp.191-195
    • /
    • 2004
  • Arabidopsis NDPK2 (AtNDPK2) is a key singaling component that regulate cellular redox state and known to enhance multiple stress tolerance when over-expressed in Arabidopsis plant (Moon et al. 2003). In order to develop transgenic potato plants with enhanced tolerance to multiple stresses, we placed an AtNDPK2 cDNA under the control of a stress-inducible SWPA2 promoter or enhanced CaMV 35S promoter. Transgenic potato plants (cv. Superior and Atlantic) were generated using an Agrobacterium-mediated transformation system and selected on MS medium containing 100 mg/L kanamycin. Genomic Southern blot analysis confirmed the incorporation of AtNDPK2 cDNA into the potato genome. When potato leaf discs were treated with methyl viologen (MV) at 10 $\mu$M, transgenic plants showed higher tolerance to MV than non-transgenic or vector-transformed plants. The NDPK2 transgenic potato plants will be further used for analysis of stress-tolerance to multiple environmental stresses.

OsATG10b, an Autophagosome Component, Is Needed for Cell Survival against Oxidative Stresses in Rice

  • Shin, Jun-Hye;Yoshimoto, Kohki;Ohsumi, Yoshinori;Jeon, Jong-seong;An, Gynheung
    • Molecules and Cells
    • /
    • v.27 no.1
    • /
    • pp.67-74
    • /
    • 2009
  • Autophagy degrades toxic materials and old organelles, and recycles nutrients in eukaryotic cells. Whereas the studies on autophagy have been reported in other eukaryotic cells, its functioning in plants has not been well elucidated. We analyzed the roles of OsATG10 genes, which are autophagy-related. Two rice ATG10 genes - OsATG10a and OsATG10b - share significant sequence homology (about 75%), and were ubiquitously expressed in all organs examined here. GUS assay indicated that OsATG10b was highly expressed in the mesophyll cells and vascular tissue of younger leaves, but its level of expression decreased in older leaves. We identified T-DNA insertional mutants in that gene. Those osatg10b mutants were sensitive to treatments with high salt and methyl viologen (MV). Monodansylcadaverine-staining experiments showed that the number of autophagosomes was significantly decreased in the mutants compared with the WT. Furthermore, the amount of oxidized proteins increased in MV-treated mutant seedlings. These results demonstrate that OsATG10b plays an important role in the survival of rice cells against oxidative stresses.