• Title/Summary/Keyword: methods: numerical

Search Result 5,319, Processing Time 0.033 seconds

Methodological study on the High Dynamic Range Imaging Processing (채광·조명설비시스템의 광학 분석을 위한 이미지 프로세싱 기법에 관한 연구)

  • Lim, Hong Soo;Kim, Gon
    • KIEAE Journal
    • /
    • v.10 no.4
    • /
    • pp.3-8
    • /
    • 2010
  • Recently, various daylight evaluation methods for visual environment have been developed; simulation analysis methods, numerical calculation, and data monitoring methods. However, it is impossible for simulation analysis to make real scenes and visualize real images exactly. Also, a numerical calculation is considered as an out of date and time-consuming mean. Therefore, for acquisition of accurate results, many studies often use the monitoring data methods. Especially, most studies regarding discomfort glare are evaluated by measuring the physical quantity of luminance through traditional measuring Minolta Luminance meters as an instrument. But, this method has a difficulty in measuring several points at the same time because of the limitation of spaces and time when mapping. So, this study focused on the potential usefulness of High Dynamic Range photography technique as a luminance mapping tool. In order to evaluate the accuracy of proposed programs such as webHDR, Photomatix and PHOTOLUX, this paper has conducted an experiment by using Canon EOS 5D and NICON Coolpix8400 digital camera.

A comparison of the neumann-kelvin and rankine source methods for wave resistance calculations

  • Yu, Min;Falzarano, Jeffrey
    • Ocean Systems Engineering
    • /
    • v.7 no.4
    • /
    • pp.371-398
    • /
    • 2017
  • Calm water wave resistance plays a very important role in ship hull design. Numerical methods are meaningful for this reason. In this study, two prevailing methods, the Neumann-Kelvin and the Rankine source method, were implemented and compared. The Neumann-Kelvin method assumes linearized free surface boundary condition and only needs to mesh the hull surface. The Rankine source method considers nonlinear free surface boundary condition and meshes both the ship hull surface and free surface. Both methods were implemented and the wave resistance of a Wigley III and three Series 60(Cb=0.6, 0.7, 0.8) hulls were analyzed. The results were compared with experimental results and the merits of both numerical techniques were quantified. Based on the results, it is concluded that the Rankine source method is more accurate in the calculation of the wave-making resistance. Using the Neumann-Kelvin method, it is found to be easier to model the hull and can be used for slender ships to solve problems like wave current coupling calculation.

Analysis of Bulk Metal Forming Process by Reproducing Kernel Particle Method (재생커널입자법을 이용한 체적성형공정의 해석)

  • Han, Kyu-Taek
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.3
    • /
    • pp.21-26
    • /
    • 2009
  • The finite element analysis of metal forming processes often fails because of severe mesh distortion at large deformation. As the concept of meshless methods, only nodal point data are used for modeling and solving. As the main feature of these methods, the domain of the problem is represented by a set of nodes, and a finite element mesh is unnecessary. This computational methods reduces time-consuming model generation and refinement effort. It provides a higher rate of convergence than the conventional finite element methods. The displacement shape functions are constructed by the reproducing kernel approximation that satisfies consistency conditions. In this research, A meshless method approach based on the reproducing kernel particle method (RKPM) is applied with metal forming analysis. Numerical examples are analyzed to verify the performance of meshless method for metal forming analysis.

  • PDF

Efficient methods for integrating weight function: a comparative analysis

  • Dubey, Gaurav;Kumar, Shailendra
    • Structural Engineering and Mechanics
    • /
    • v.55 no.4
    • /
    • pp.885-900
    • /
    • 2015
  • This paper introduces Romberg-Richardson's method as one of the numerical integration tools for computation of stress intensity factor in a pre-cracked specimen subjected to a complex stress field across the crack faces. Also, the computation of stress intensity factor for various stress fields using existing three methods: average stress over interval method, piecewise linear stress method, piecewise quadratic method are modified by using Richardson extrapolation method. The direct integration method is used as reference for constant and linear stress distribution across the crack faces while Gauss-Chebyshev method is used as reference for nonlinear distribution of stress across the crack faces in order to obtain the stress intensity factor. It is found that modified methods (average stress over intervals-Richardson method, piecewise linear stress-Richardson method, piecewise quadratic-Richardson method) yield more accurate results after a few numbers of iterations than those obtained using these methods in their original form. Romberg-Richardson's method is proven to be more efficient and accurate than Gauss-Chebyshev method for complex stress field.

Multiclass loss systems with several server allocation methods (여러 서버배정방식의 멀티클래스 손실시스템 연구)

  • Na, Seongryong
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.4
    • /
    • pp.679-688
    • /
    • 2016
  • In this paper, we study multiclass loss systems with different server allocation methods. The Markovian states of the systems are defined and their effective representation is investigated. The limiting probabilities are derived based on the Markovian property to determine the performance measures of the systems. The effects of the assignment methods are compared using numerical solutions.

The Effect of Structural Models(Membrane or Plate) on the Modal Model Method (구조물의 모델링(박막 혹은 평판)이 모드 모델 방법에 미치는 영향)

  • Kim, Sea-Moon;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.714-719
    • /
    • 2000
  • The analysis of structures may be classified into three categories: theoretical, numerical, and experimental approaches. The numerical and experimental methods are very useful when the structures to be analyzed have complicated shapes or geometry because theoretical methods are restricted to simple and special cases. However, the theoretical methods are very important analysis in the viewpoint that they can give basic insight for the structural behavior. Among them the modal model method is widely used because of the powerful propertiy of eigenfunctions(mode shapes), or orthogonality. In this paper, the modal model method was reviewed and studied for various models for structures: string, beam, membrane, and plate. Governing equations and solution methods were compared and a structural-acoustic coupling system was used for an application.

  • PDF

Damage Detection of Truss Structure based on the Predicted Change of Parameter Matrices (파라미터행렬의 변화량 추정에 근거한 트러스 구조물의 손상탐지)

  • Kang, Taik-Seon;Lee, Byeong-Hyeon;Eun, Hee-Chang
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.1
    • /
    • pp.27-32
    • /
    • 2018
  • This work provides the analytical methods to represent the updated form of stiffness or flexibility matrices using the measurements of the first few natural frequencies and the corresponding mode shapes. This study derives the mathematical forms on the variance of stiffness or flexibility matrices to minimize the performance index in the satisfaction of the eigen-function including the residual force depending on the measured data. The proposed methods can be utilized in detecting damage and updating the parameter matrices deviated from the analytical parameter matrices. The validity of the proposed methods is investigated in a numerical experiment of truss structure and the numerical results of stiffness-based and flexibility-based methods are compared. The sensitivity to the external noise is also examined for applying to the practical work.

Preliminary numerical analysis of controllable prestressed wale system for deep excavation

  • Lee, Chang Il;Kim, Eun Kyum;Park, Jong Sik;Lee, Yong-Joo
    • Geomechanics and Engineering
    • /
    • v.15 no.5
    • /
    • pp.1061-1070
    • /
    • 2018
  • The main purpose of retaining wall methods for deep excavation is to keep the construction site safe from the earth pressure acting on the backfill during the construction period. Currently used retaining wall methods include the common strut method, anchor method, slurry wall method, and raker method. However, these methods have drawbacks such as reduced workspace and intrusion into private property, and thus, efforts are being made to improve them. The most advanced retaining wall method is the prestressed wale system, so far, in which a load corresponding to the earth pressure is applied to the wale by using the tension of a prestressed (PS) strand wire. This system affords advantages such as providing sufficient workspace by lengthening the strut interval and minimizing intrusion into private properties adjacent to the site. However, this system cannot control the tension of the PS strand wire, and thus, it cannot actively cope with changes in the earth pressure due to excavation. This study conducts a preliminary numerical analysis of the field applicability of the controllable prestressed wale system (CPWS) which can adjust the tension of the PS strand wire. For the analysis, back analysis was conducted through two-dimensional (2D) and three-dimensional (3D) numerical analyses based on the field measurement data of the typical strut method, and then, the field applicability of CPWS was examined by comparing the lateral deflection of the wall and adjacent ground surface settlements under the same conditions. In addition, the displacement and settlement of the wall were predicted through numerical analysis while the prestress force of CPWS was varied, and the structural stability was analysed through load tests on model specimens.

Semi-Analytical Methods for Different Problems of Diffraction-Radiation by Vertical Circular Cylinders

  • Malenica, Sime
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.2
    • /
    • pp.116-138
    • /
    • 2012
  • As in the other fields of mechanics, analytical methods represent an important analysis tool in marine hydrodynamics. The analytical approach is interesting for different reasons : it gives reference results for numerical codes verification, it gives physical insight into some complicated problems, it can be used as a simplified predesign tool, etc. This approach is of course limited to some simplified geometries (cylinders, spheres, ...), and only the case of one or more cylinders, truncated or not, will be considered here. Presented methods are basically eigenfunction expansions whose complexity depends on the boundary conditions. The hydrodynamic boundary value problem (BVP) is formulated within the usual assumptions of potential flow and is additionally simplified by the perturbation method. By using this approach, the highly nonlinear problem decomposes into its linear part and the higher order (second, third, ...) corrections. Also, periodicity is assumed so that the time dependence can be factorized i.e. the frequency domain formulation is adopted. As far as free surface flows are concerned, only cases without or with small forward speed are sufficiently simple to be solved semi-analytically. The problem of the floating body advancing in waves with arbitrary forward speed is far more complicated. These remarks are also valid for the general numerical methods where the case of arbitrary forward speed, even linearized, is still too difficult from numerical point of view, and "it is fair to say that there exists at present no general practical numerical method for the wave resistance problem" [9], and even less for the general seakeeping problem. We note also that, in the case of bluff bodies like cylinders, the assumptions of the potential flow are justified only if the forward speed is less than the product of wave amplitude with wave frequency.

ALTERNATIVE NUMERICAL APPROACHES TO THE JUMP-DIFFUSION OPTION VALUATION

  • CHOI BYUNG WOOK;KI HO SAM;LEE MI YOUNG
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.519-536
    • /
    • 2005
  • The purpose of this paper is to propose several approximating methods to obtain the American option prices under jump-diffusion processes. The first method is to extend an approximating method to the optimal exercise boundary by a multipiece exponential function suggested by Ju [17]. The second approach is to modify the analytical methods of MacMillan [20] and Zhang [25] in a discrete time space. The third approach is to apply the simulation technique of Ibanez and Zapareto [14] to the problem of American option pricing when the jumps are allowed. Finally, we compare the numerical performance of each suggesting method with those of the previous numerical approaches.