• Title/Summary/Keyword: method optimization

Search Result 9,145, Processing Time 0.034 seconds

An Intelligent Intrusion Detection Model Based on Support Vector Machines and the Classification Threshold Optimization for Considering the Asymmetric Error Cost (비대칭 오류비용을 고려한 분류기준값 최적화와 SVM에 기반한 지능형 침입탐지모형)

  • Lee, Hyeon-Uk;Ahn, Hyun-Chul
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.157-173
    • /
    • 2011
  • As the Internet use explodes recently, the malicious attacks and hacking for a system connected to network occur frequently. This means the fatal damage can be caused by these intrusions in the government agency, public office, and company operating various systems. For such reasons, there are growing interests and demand about the intrusion detection systems (IDS)-the security systems for detecting, identifying and responding to unauthorized or abnormal activities appropriately. The intrusion detection models that have been applied in conventional IDS are generally designed by modeling the experts' implicit knowledge on the network intrusions or the hackers' abnormal behaviors. These kinds of intrusion detection models perform well under the normal situations. However, they show poor performance when they meet a new or unknown pattern of the network attacks. For this reason, several recent studies try to adopt various artificial intelligence techniques, which can proactively respond to the unknown threats. Especially, artificial neural networks (ANNs) have popularly been applied in the prior studies because of its superior prediction accuracy. However, ANNs have some intrinsic limitations such as the risk of overfitting, the requirement of the large sample size, and the lack of understanding the prediction process (i.e. black box theory). As a result, the most recent studies on IDS have started to adopt support vector machine (SVM), the classification technique that is more stable and powerful compared to ANNs. SVM is known as a relatively high predictive power and generalization capability. Under this background, this study proposes a novel intelligent intrusion detection model that uses SVM as the classification model in order to improve the predictive ability of IDS. Also, our model is designed to consider the asymmetric error cost by optimizing the classification threshold. Generally, there are two common forms of errors in intrusion detection. The first error type is the False-Positive Error (FPE). In the case of FPE, the wrong judgment on it may result in the unnecessary fixation. The second error type is the False-Negative Error (FNE) that mainly misjudges the malware of the program as normal. Compared to FPE, FNE is more fatal. Thus, when considering total cost of misclassification in IDS, it is more reasonable to assign heavier weights on FNE rather than FPE. Therefore, we designed our proposed intrusion detection model to optimize the classification threshold in order to minimize the total misclassification cost. In this case, conventional SVM cannot be applied because it is designed to generate discrete output (i.e. a class). To resolve this problem, we used the revised SVM technique proposed by Platt(2000), which is able to generate the probability estimate. To validate the practical applicability of our model, we applied it to the real-world dataset for network intrusion detection. The experimental dataset was collected from the IDS sensor of an official institution in Korea from January to June 2010. We collected 15,000 log data in total, and selected 1,000 samples from them by using random sampling method. In addition, the SVM model was compared with the logistic regression (LOGIT), decision trees (DT), and ANN to confirm the superiority of the proposed model. LOGIT and DT was experimented using PASW Statistics v18.0, and ANN was experimented using Neuroshell 4.0. For SVM, LIBSVM v2.90-a freeware for training SVM classifier-was used. Empirical results showed that our proposed model based on SVM outperformed all the other comparative models in detecting network intrusions from the accuracy perspective. They also showed that our model reduced the total misclassification cost compared to the ANN-based intrusion detection model. As a result, it is expected that the intrusion detection model proposed in this paper would not only enhance the performance of IDS, but also lead to better management of FNE.

3T MR Spin Echo T1 Weighted Image at Optimization of Flip Angle (3T MR 스핀에코 T1강조영상에서 적정의 숙임각)

  • Bae, Sung-Jin;Lim, Chung-Hwang
    • Journal of radiological science and technology
    • /
    • v.32 no.2
    • /
    • pp.177-182
    • /
    • 2009
  • Purpose : This study presents the optimization of flip angle (FA) to obtain higher contrast to noise ratio (CNR) and lower specific absorption rate (SAR). Materials and Method : T1-weighted images of the cerebrum of brain were obtained from 50$^\circ$ to 130$^\circ$ FA with 10$^\circ$ interval. Signal to noise ratios (SNRs) were calculated for white matter (WM), gray matter (GM), and background noise. The proper FA was analyzed by T-test statistics and Kruskal-wallis analysis using R1 = 1- exp ($\frac{-TR}{T1}$) and Ernst angle cos $\theta$ = exp ($\frac{-TR}{T1}$). Results : The SNR of WM at 130$^\circ$ FA is approximately 1.6 times higher than the SNR of WM at 50$^\circ$. The SNR of GM at 130$^\circ$ FA is approximately 1.9 times higher than the SNR of GM at 50$^\circ$. Although the SNRs of WM and GM showed similar trends with the change of FA values, the slowdown point of decrease after linear fitting were different. While the SNR of WM started decreasing at 120$^\circ$ FA, the SNR of GM started decreasing at less than 110$^\circ$. The highest SNRs of WM and GM were obtained at 130$^\circ$ FA. The highest CNRs, however, were obtained at 80$^\circ$ FA. Conclusion : Although SNR increased with the change of FA values from 50$^\circ$ to 130$^\circ$ at 3T SE T1WI, CNR was higher at 80$^\circ$ FA than at the usually used 90$^\circ$ FA. In addition, the SAR was decreased by using smaller FA. The CNR can be increased by using this optimized FA at 3T MR SE T1WI.

  • PDF

Electrical Stimulation Parameters in Normal and Degenerate Rabbit Retina (정상 망막과 변성 망막을 위한 전기자극 파라미터)

  • Jin, Gye-Hwan;Goo, Yong-Sook
    • Progress in Medical Physics
    • /
    • v.19 no.1
    • /
    • pp.73-79
    • /
    • 2008
  • Retinal prosthesis is regarded as the most feasible method for the blind caused by retinal diseases such as retinitis pigmentosa (RP) or age related macular degeneration (AMD). Recently Korean consortium launched for developing retinal prosthesis. One of the prerequisites for the success of retinal prosthesis is the optimization of the electrical stimuli applied through the prosthesis. Since electrical characteristics of degenerate retina are expected to differ from those of normal retina, we performed voltage stimulation experiment both in normal and degenerate retina to provide a guideline for the optimization of electrical stimulation for the upcoming prosthesis. After isolation of retina, retinal patch was attached with the ganglion cell side facing the surface of microelectrode arrays (MEA). $8{\times}8$ grid layout MEA (electrode diameter: $30{\mu}m$, electrode spacing: $200{\mu}m$, and impedance: $50k{\Omega}$ at 1 kHz) was used to record in-vitro retinal ganglion cell activity. Mono-polar electrical stimulation was applied through one of the 60 MEA channel, and the remaining channels were used for recording. The electrical stimulus was a constant voltage, charge-balanced biphasic, anodic-first square wave pulse without interphase delay, and 50 trains of pulse was applied with a period of 2 sec. Different electrical stimuli were applied. First, pulse amplitude was varied (voltage: $0.5{\sim}3.0V$). Second, pulse duration was varied $(100{\sim}1,200{\mu}s)$. Evoked responses were analyzed by PSTH from averaged data with 50 trials. Charge density was calculated with Ohm's and Coulomb's law. In normal retina, by varying the pulse amplitude from 0.5 to 3V with fixed duration of $500{\mu}s$, the threshold level for reliable ganglion cell response was found at 1.5V. The calculated threshold of charge density was $2.123mC/cm^2$. By varying the pulse duration from 100 to $1,200{\mu}s$ with fixed amplitude of 2V, the threshold level was found at $300{\mu}s$. The calculated threhold of charge density was $1.698mC/cm^2$. Even after the block of ON-pathway with L-(1)-2-amino-4-phosphonobutyric acid (APB), electrical stimulus evoked ganglion cell activities. In this APB-induced degenerate retina, by varying the pulse duration from 100 to $1200{\mu}s$ with fixed voltage of 2 V, the threshold level was found at $300{\mu}s$, which is the same with normal retina. More experiment with APB-induced degenerate retina is needed to make a clear comparison of threshold of charge density between normal and degenerate retina.

  • PDF

Comparison of Retinal Waveform between Normal and rd/rd Mouse (정상 마우스와 rd/rd 마우스의 망막파형 비교)

  • Ye, Jang-Hee;Seo, Je-Hoon;Goo, Yong-Sook
    • Progress in Medical Physics
    • /
    • v.19 no.3
    • /
    • pp.157-163
    • /
    • 2008
  • Retinal prosthesis is regarded as the most feasible method for the blind caused by retinal diseases such as retinitis pigmentosa or age-related macular degeneration. One of the prerequisites for the success of retinal prosthesis is the optimization of the electrical stimuli applied through the prosthesis. Since electrical characteristics of degenerate retina are expected to differ from those of normal retina, we investigated differences of the retinal waveforms in normal and degenerate retina to provide a guideline for the optimization of electrical stimulation for the upcoming prosthesis. After isolation of retina, retinal patch was attached with the ganglion cell side facing the surface of microelectrode arrays (MEA). $8{\times}8$ grid layout MEA (electrode diameter: $30{\mu}m$, electrode spacing: $200{\mu}m$, and impedance: 50 $k{\Omega}$ at 1 kHz) was used to record in-vitro retinal ganglion cell activity. In normal mice (C57BL/6J strain) of postnatal day 28, only short duration (<2 ms) retinal spikes were recorded. In rd/rd mice (C3H/HeJ strain), besides normal spikes, waveform with longer duration (~100 ms), the slow wave component was recorded. We attempted to understand the mechanism of this slow wave component in degenerate retina using various synaptic blockers. We suggest that stronger glutamatergic input from bipolar cell to the ganglion cell in rd/rd mouse than normal mouse contributes the most to this slow wave component. Out of many degenerative changes, we favor elimination of the inhibitory horizontal input to bipolar cells as a main contributor for a relatively stronger input from bipolar cell to ganglion cell in rd/rd mouse.

  • PDF

Dual Codec Based Joint Bit Rate Control Scheme for Terrestrial Stereoscopic 3DTV Broadcast (지상파 스테레오스코픽 3DTV 방송을 위한 이종 부호화기 기반 합동 비트율 제어 연구)

  • Chang, Yong-Jun;Kim, Mun-Churl
    • Journal of Broadcast Engineering
    • /
    • v.16 no.2
    • /
    • pp.216-225
    • /
    • 2011
  • Following the proliferation of three-dimensional video contents and displays, many terrestrial broadcasting companies have been preparing for stereoscopic 3DTV service. In terrestrial stereoscopic broadcast, it is a difficult task to code and transmit two video sequences while sustaining as high quality as 2DTV broadcast due to the limited bandwidth defined by the existing digital TV standards such as ATSC. Thus, a terrestrial 3DTV broadcasting with a heterogeneous video codec system, where the left image and right images are based on MPEG-2 and H.264/AVC, respectively, is considered in order to achieve both high quality broadcasting service and compatibility for the existing 2DTV viewers. Without significant change in the current terrestrial broadcasting systems, we propose a joint rate control scheme for stereoscopic 3DTV service based on the heterogeneous dual codec systems. The proposed joint rate control scheme applies to the MPEG-2 encoder a quadratic rate-quantization model which is adopted in the H.264/AVC. Then the controller is designed for the sum of the left and right bitstreams to meet the bandwidth requirement of broadcasting standards while the sum of image distortions is minimized by adjusting quantization parameter obtained from the proposed optimization scheme. Besides, we consider a condition on maintaining quality difference between the left and right images around a desired level in the optimization in order to mitigate negative effects on human visual system. Experimental results demonstrate that the proposed bit rate control scheme outperforms the rate control method where each video coding standard uses its own bit rate control algorithm independently in terms of the increase in PSNR by 2.02%, the decrease in the average absolute quality difference by 77.6% and the reduction in the variance of the quality difference by 74.38%.

Convolution-Superposition Based IMRT Plan Study for the PTV Containing the Air Region: A Prostate Cancer Case (Convolution-Superposition 알고리즘을 이용한 치료계획시스템에서 공기가 포함된 표적체적에 대한 IMRT 플랜: 전립선 케이스)

  • Kang, Sei-Kwon;Yoon, Jai-Woong;Park, Soah;Hwang, Taejin;Cheong, Kwang-Ho;Han, Taejin;Kim, Haeyoung;Lee, Me-Yeon;Kim, Kyoung Ju;Bae, Hoonsik
    • Progress in Medical Physics
    • /
    • v.24 no.4
    • /
    • pp.271-277
    • /
    • 2013
  • In prostate IMRT planning, the planning target volume (PTV), extended from a clinical target volume (CTV), often contains an overlap air volume from the rectum, which poses a problem inoptimization and prescription. This study was aimed to establish a planning method for such a case. There can be three options in which volume should be considered the target during optimization process; PTV including the air volume of air density ('airOpt'), PTV including the air volume of density value one, mimicking the tissue material ('density1Opt'), and PTV excluding the air volume ('noAirOpt'). Using 10 MV photon beams, seven field IMRT plans for each target were created with the same parameter condition. For these three cases, DVHs for the PTV, bladder and the rectum were compared. Also, the dose coverage for the CTV and the shifted CTV were evaluated in which the shifted CTV was a copied and translated virtual CTV toward the rectum inside the PTV, thus occupying the initial position of the overlap air volume, simulating the worst condition for the dose coverage in the target. Among the three options, only density1Opt plan gave clinically acceptable result in terms of target coverage and maximum dose. The airOpt plan gave exceedingly higher dose and excessive dose coverage for the target volume whereas noAirOpt plan gave underdose for the shifted CTV. Therefore, for prostate IMRT plan, having an air region in the PTV, density modification of the included air to the value of one, is suggested, prior to optimization and prescription for the PTV. This idea can be equally applied to any cases including the head and neck cancer with the PTV having the overlapped air region. Further study is being under process.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2013 (설비공학 분야의 최근 연구 동향 : 2013년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.12
    • /
    • pp.605-619
    • /
    • 2014
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2013. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and relative parts including orifices, dampers and ducts, fuel cells and power plants, cooling and air-conditioning, heat and mass transfer, two phase flow, and the flow around buildings and structures. Research issues dealing with home appliances, flows around buildings, nuclear power plant, and manufacturing processes are newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for general analytical model for desiccant wheels, the effects of water absorption on the thermal conductivity of insulation materials, thermal properties of Octadecane/xGnP shape-stabilized phase change materials and $CO_2$ and $CO_2$-Hydrate mixture, effect of ground source heat pump system, the heat flux meter location for the performance test of a refrigerator vacuum insulation panel, a parallel flow evaporator for a heat pump dryer, the condensation risk assessment of vacuum multi-layer glass and triple glass, optimization of a forced convection type PCM refrigeration module, surface temperature sensor using fluorescent nanoporous thin film. In the area of pool boiling and condensing heat transfer, researches on ammonia inside horizontal smooth small tube, R1234yf on various enhanced surfaces, HFC32/HFC152a on a plain surface, spray cooling up to critical heat flux on a low-fin enhanced surface were actively carried out. In the area of industrial heat exchangers, researches on a fin tube type adsorber, the mass-transfer kinetics of a fin-tube-type adsorption bed, fin-and-tube heat exchangers having sine wave fins and oval tubes, louvered fin heat exchanger were performed. (3) In the field of refrigeration, studies are categorized into three groups namely refrigeration cycle, refrigerant and modeling and control. In the category of refrigeration cycle, studies were focused on the enhancement or optimization of experimental or commercial systems including a R410a VRF(Various Refrigerant Flow) heat pump, a R134a 2-stage screw heat pump and a R134a double-heat source automotive air-conditioner system. In the category of refrigerant, studies were carried out for the application of alternative refrigerants or refrigeration technologies including $CO_2$ water heaters, a R1234yf automotive air-conditioner, a R436b water cooler and a thermoelectric refrigerator. In the category of modeling and control, theoretical and experimental studies were carried out to predict the performance of various thermal and control systems including the long-term energy analysis of a geo-thermal heat pump system coupled to cast-in-place energy piles, the dynamic simulation of a water heater-coupled hybrid heat pump and the numerical simulation of an integral optimum regulating controller for a system heat pump. (4) In building mechanical system research fields, twenty one studies were conducted to achieve effective design of the mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, and renewable energies in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment is mostly focused on indoor environment and building energy. The main researches of indoor environment are related to infiltration, ventilation, leak flow and airtightness performance in residential building. The subjects of building energy are worked on energy saving, operation method and optimum operation of building energy systems. The remained studies are related to the special facility such as cleanroom, internet data center and biosafety laboratory. water supply and drain system, defining standard input variables of BIM (Building Information Modeling) for facility management system, estimating capability and providing operation guidelines of subway station as shelter for refuge and evaluation of pollutant emissions from furniture-like products.

Optimization of Solvent Extraction Process on the Active Functional Components from Chinese Quince (모과내 기능성 유용성분 용매추출공정의 최적화)

  • Jeon, Ju-Yeong;Jo, In-Hee;Kyung, Hyun-Kyu;Kim, Hyun-A;Lee, Chang-Min;Choi, Yong-Hee
    • Food Engineering Progress
    • /
    • v.14 no.2
    • /
    • pp.92-98
    • /
    • 2010
  • In this study, various active functional components in Chinese Quince were extracted by solvent extraction method. A central composit design for optimization was applied to investigate the effects of independent variables such as solvent to sample ratio ($X_{1}$), extraction temperature ($X_{2}$), and extraction time ($X_{3}$) on the soluble solid contents ($Y_{1}$), total phenols ($Y_{2}$), electron donating ability ($Y_{3}$), browning color ($Y_{4}$) and reducing sugar contents ($Y_{5}$). It was found that extraction temperature and extraction time were the main effective factors in this extraction process. The maximum soluble solid contents of 35.77% was obtained at 26.38 mL/g ($X_{1}$), 72.82$^{\circ}C$ ($X_{2}$) and 74.86 min ($X_{3}$) in saddle point. Total phenols were rarely affected by solvent ratio and extraction time, but it was affected by extraction temperature. The maximum total phenols of 20.70% was obtained at 22.61 mL/g ($X_{1}$), 84.49$^{\circ}C$ ($X_{2}$), 77.25 min ($X_{3}$) in saddle point. The electron donating ability was affected by extraction time. The maximum electron donating ability of 94.12% was obtained at 10.65 mL/g ($X_{1}$), 67.78$^{\circ}C$ ($X_{2}$), 96.75 min ($X_{3}$) in saddle point. The maximum browning color of 0.32% was obtained at 23.77 mL/g ($X_{1}$), 87.27$^{\circ}C$ ($X_{2}$), 96.68 min ($X_{3}$) in saddle point. The maximum value of reducing sugar content of 10.55% was obtained at 26.83 mL/g ($X_{1}$), 82.167$^{\circ}C$ ($X_{2}$), 81.94 min ($X_{3}$). Reducing sugar content was affected by extraction time.

The Research on the Development Potential of Smart Public Facilities in Public Design - Focusing on examples of public facilities in smart cities - (공공디자인에서 스마트 공공시설물의 발전 가능성에 관한 연구 -스마트 도시의 공공시설물 사례를 중심으로-)

  • Son, Dong Joo
    • Journal of Service Research and Studies
    • /
    • v.13 no.4
    • /
    • pp.97-112
    • /
    • 2023
  • Background: In modern society, the importance of Public Design has become increasingly significant in contributing to the enhancement of urban functionality and the quality of life of citizens. Smart Public Facilities have played a pivotal role in enriching user experience by improving accessibility, convenience, and safety, and in elevating the value of the city. This research recognizes the importance of Public Facilities and explores the potential of Smart Public Facilities in solving urban challenges and progressing towards sustainable and Inclusive cities. Method: The literature review comprehensively examines existing theories and research results on Smart Public Facilities. The case study analyzes actual examples of Smart Public Facilities implemented in cities both domestically and internationally, drawing out effects, user satisfaction, and areas for improvement. Through analysis and discussion, the results of the case studies are evaluated, discussing the potential development of Smart Public Facilities. Results: Smart Public Facilities have been found to bring positive changes in various aspects such as urban management, energy efficiency, safety, and information accessibility. In terms of urban management, they play a crucial role in optimization, social Inclusiveness, environmental protection, fostering citizen participation, and promoting technological innovation. These changes create a new form of urban space, combining physical space and digital technology, enhancing the quality of life in the city. Conclusion: This research explores the implications, current status, and functions of Smart Public Facilities in service and design aspects, and their impact on the urban environment and the lives of citizens. In conclusion, Smart Public Facilities have brought about positive changes in the optimization of urban management, enhancement of energy efficiency, increased information accessibility, User-Centric design, increased interaction, and social Inclusiveness. Technological innovation and the integration of Public Facilities have made cities more efficient and proactive, enabling data-based decision-making and optimized service delivery. Such developments enable the creation of new urban environments through the combination of physical space and digital technology. The advancement of Smart Public Facilities indicates the direction of urban development, where future cities can become more intelligent, proactive, and User-Centric. Therefore, they will play a central role in Public Design and greatly contribute to improving the urban environment and the quality of life of citizens.

Optimization and Stabilization of Automated Synthesis Systems for Reduced 68Ga-PSMA-11 Synthesis Time (68Ga-PSMA-11 합성 시간 단축을 위한 자동합성장치의 최적화 및 안정성 연구)

  • Ji hoon KANG;Sang Min SHIN;Young Si PARK;Hea Ji KIM;Hwa Youn JANG
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.56 no.2
    • /
    • pp.147-155
    • /
    • 2024
  • Gallium-68-prostate-specific membrane antigen-11 (68Ga-PSMA-11) is a positron emission tomography radiopharmaceutical that labels a Glu-urea-Lys-based ligand with 68Ga, binding specifically to the PSMA. It is used widely for imaging recurrent prostate cancer and metastases. On the other hand, the preparation and quality control testing of 68Ga-PSMA-11 in medical institutions takes over 60 minutes, limiting the daily capacity of 68Ge/68Ga generators. While the generator provides 1,110 MBq (30 mCi) nominally, its activity decreases over time, and the labeling yield declines irregularly. Consequently, additional preparations are needed, increasing radiation exposure for medical technicians, prolonging patient wait times, and necessitating production schedule adjustments. This study aimed to reduce the 68Ga-PSMA-11 preparation time and optimize the automated synthesis system. By shortening the reaction time between 68Ga and the PSMA-11 precursor and adjusting the number of purification steps, a faster and more cost-effective method was tested while maintaining quality. The final synthesis time was reduced from 30 to 20 minutes, meeting the standards for the HEPES content, residual solvent EtOH content, and radiochemical purity. This optimized procedure minimizes radiation exposure for medical technicians, reduces patient wait times, and maintains consistent production schedules, making it suitable for clinical application.