• 제목/요약/키워드: method of fundamental solution

검색결과 244건 처리시간 0.031초

리눅스 보안 모듈을 이용한 모바일 장치 통제 시스템 (Mobile Devices Control System using LSM)

  • 배희성;김소연;박태규
    • 정보보호학회논문지
    • /
    • 제27권1호
    • /
    • pp.49-57
    • /
    • 2017
  • 모바일 단말기의 확산과 더불어 많은 조직에서 직원과 방문자의 업무 효율과 보안을 위해 BYOD 개념을 MDM을 활용하여 구현하고 있다. 그러나 응용 수준에서의 단말기 장치 통제는 보안의 근본적 해결책이 될 수 없다는 문제점이 발생한다. 본 논문은 보다 근본적이고 유연한 보안 정책을 수립하는 방법으로서 모바일 단말기의 커널 수준에서 리눅스 보안 모듈(Linux Security Module)을 사용하여 강제적 접근 제어 방식으로 단말기 장치를 통제하는 방식과 절차를 제안한다.

저온의 고-액상변화 모듈 용기의 배열에 따른 축냉시스템의 수치해석 (Numerical Analysis of Cold Storage System with Array of Solid-Liquid Phase Change Module)

  • 문수범
    • 해양환경안전학회지
    • /
    • 제21권5호
    • /
    • pp.577-582
    • /
    • 2015
  • 본 논문은 육해상의 운송장치에 축냉시스템을 적용시키기 위한 기초 연구이다. 또한, 축냉재의 고액상변화에 대한 수치해석을 수행한 연구이다. 수치해석법으로는 유한차분법(Finite-Difference Method)을 이용하였으며, 1차원 비정상의 상태를 가정하여 계산하였다. 또한 용기는 직사각형의 구형용기로 가정하여 대칭의 조건을 이용하였다. 축냉을 목적으로 사용하는 열매체는 염화칼슘 수용액($CaCl_2$) 30wt%의 물성치를 사용하여 계산을 수행하였다. 계산에 영향을 미치는 요소로는 냉동고의 냉기 온도 및 냉기 유속이 있으며, 축냉재를 싸고 있는 용기는 플라스틱으로 가정하였다. 본 수치해석에서 경계층의 두께는 냉기의 속도 증가와 함께 얇게 되고 축열시간도 짧아지는 것을 확인할 수 있었다. 그리고 냉기의 유속이 빨라질수록 열전달이 촉진되어 축냉용기 전면부에서의 온도가 낮아짐을 알았다. 축냉용기의 후면부에서는 경계층이 두꺼워져 열전달이 전면부에 비해 작아짐을 알았다.

Free vibration analysis of combined system with variable cross section in tall buildings

  • Jahanshahia, Mohammad Reza;Rahgozar, Reza
    • Structural Engineering and Mechanics
    • /
    • 제42권5호
    • /
    • pp.715-728
    • /
    • 2012
  • This paper deals with determining the fundamental frequency of tall buildings that consist of framed tube, shear core, belt truss and outrigger systems in which the framed tube and shear core vary in size along the height of the structure. The effect of belt truss and outrigger system is modeled as a concentrated rotational linear spring at the belt truss and outrigger system location. Many cantilevered tall structures can be treated as cantilevered beams with variable cross-section in free vibration analysis. In this paper, the continuous approach, in which a tall building is replaced by an idealized cantilever continuum representing the structural characteristics, is employed and by using energy method and Hamilton's variational principle, the governing equation for free vibration of tall building with variable distributed mass and stiffness is obtained. The general solution of governing equation is obtained by making appropriate selection for mass and stiffness distribution functions. By applying the separation of variables method for time and space, the governing partial differential equation of motion is reduced to an ordinary differential equation with variable coefficients with the assumption that the transverse displacement is harmonic. A power-series solution representing the mode shape function of tall building is used. Applying boundary conditions yields the boundary value problem; the frequency equation is established and solved through a numerical process to determine the natural frequencies. Computer program has been developed in Matlab (R2009b, Version 7.9.0.529, Mathworks Inc., California, USA). A numerical example has been solved to demonstrate the reliability of this method. The results of the proposed mathematical model give a good understanding of the structure's dynamic characteristics; it is easy to use, yet reasonably accurate and suitable for quick evaluations during the preliminary design stages.

An investigation of non-linear optimization methods on composite structures under vibration and buckling loads

  • Akbulut, Mustafa;Sarac, Abdulhamit;Ertas, Ahmet H.
    • Advances in Computational Design
    • /
    • 제5권3호
    • /
    • pp.209-231
    • /
    • 2020
  • In order to evaluate the performance of three heuristic optimization algorithms, namely, simulated annealing (SA), genetic algorithm (GA) and particle swarm optimization (PSO) for optimal stacking sequence of laminated composite plates with respect to critical buckling load and non-dimensional natural frequencies, a multi-objective optimization procedure is developed using the weighted summation method. Classical lamination theory and first order shear deformation theory are employed for critical buckling load and natural frequency computations respectively. The analytical critical buckling load and finite element calculation schemes for natural frequencies are validated through the results obtained from literature. The comparative study takes into consideration solution and computational time parameters of the three algorithms in the statistical evaluation scheme. The results indicate that particle swarm optimization (PSO) considerably outperforms the remaining two methods for the special problem considered in the study.

접합면 스프링요소를 고려한 단말뚝-지반 상호작용계의 수직진동해석 (Vertical Vibration Analysis of Single Pile-Soil Interaction System Considering the Interface Spring)

  • 김민규;김문겸;이종세
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 추계 학술발표회 논문집
    • /
    • pp.106-113
    • /
    • 2002
  • In this study, a numerical analysis method for soil-pile interaction in frequency domain problem is presented. The total soil-pile interaction system is divided into two parts so called near field and far field. In the near field, beam elements are used for a pile and plain strain finite elements for soil. In the far field, dynamic fundamental solution for multi-layered half planes based on boundary element formulation is adopted for soil. These two fields are coupled using FE-BE coupling technique In order to verify the proposed soil-pile interaction analysis, the dynamic responses of pile on multi-layered half planes are simulated and the results are compared with the experimental results. Also, the dynamic response analyses of interface spring elements are performed. As a result, less spring stiffness makes the natural frequency decrease and the resonant amplitude increase.

  • PDF

A Path Specification Approach for Production Planning in Semiconductor Industry

  • Seo, Kwang-Kyu
    • 반도체디스플레이기술학회지
    • /
    • 제9권4호
    • /
    • pp.45-50
    • /
    • 2010
  • This paper explores a new approach for modeling of decision-making problems that involve uncertain, time-dependent and sequence-dependent processes which can be applied to semiconductor industry. In the proposed approach, which is based on probability theory, approximate sample paths are required to be specified by probability and statistic characteristics. Completely specified sample paths are seen to be elementary and fundamental outcomes of the related experiment. The proposed approach is suitable for modeling real processes more accurately. A case study is applied to a single item production planning problem with continuous and uncertain demand and the solution obtained by the approximate path specification method shows less computational efforts and practically desirable features. The application possibility and general plan of the proposed approach in semiconductor manufacturing process is also described in the paper.

Bar와 Beam 구조물의 기본적인 유한요소 모델의 수치해석 (Numerical Evaluation of Fundamental Finite Element Models in Bar and Beam Structures)

  • 류용희;주부석;정우영
    • 복합신소재구조학회 논문집
    • /
    • 제4권1호
    • /
    • pp.1-8
    • /
    • 2013
  • The finite element analysis (FEA) is a numerical technique to find solutions of field problems. A field problem is approximated by differential equations or integral expressions. In a finite element, the field quantity is allowed to have a simple spatial variation in terms of linear or polynomial functions. This paper represents a review and an accuracy-study of the finite element method comparing the FEA results with the exact solution. The exact solutions were calculated by solid mechanics and FEA using matrix stiffness method. For this study, simple bar and cantilever models were considered to evaluate four types of basic elements - constant strain triangle (CST), linear strain triangle (LST), bi-linear-rectangle(Q4),and quadratic-rectangle(Q8). The bar model was subjected to uniaxial loading whereas in case of the cantilever model moment loading was used. In the uniaxial loading case, all basic element results of the displacement and stress in x-direction agreed well with the exact solutions. In the moment loading case, the displacement in y-direction using LST and Q8 elements were acceptable compared to the exact solution, but CST and Q4 elements had to be improved by the mesh refinement.

Seismic motions in a non-homogeneous soil deposit with tunnels by a hybrid computational technique

  • Manolis, G.D.;Makra, Konstantia;Dineva, Petia S.;Rangelov, Tsviatko V.
    • Earthquakes and Structures
    • /
    • 제5권2호
    • /
    • pp.161-205
    • /
    • 2013
  • We study seismically induced, anti-plane strain wave motion in a non-homogeneous geological region containing tunnels. Two different scenarios are considered: (a) The first models two tunnels in a finite geological region embedded within a laterally inhomogeneous, layered geological profile containing a seismic source. For this case, labelled as the first boundary-value problem (BVP 1), an efficient hybrid technique comprising the finite difference method (FDM) and the boundary element method (BEM) is developed and applied. Since the later method is based on the frequency-dependent fundamental solution of elastodynamics, the hybrid technique is defined in the frequency domain. Then, an inverse fast Fourier transformation (FFT) is used to recover time histories; (b) The second models a finite region with two tunnels, is embedded in a homogeneous half-plane, and is subjected to incident, time-harmonic SH-waves. This case, labelled as the second boundary-value problem (BVP 2), considers complex soil properties such as anisotropy, continuous inhomogeneity and poroelasticity. The computational approach is now the BEM alone, since solution of the surrounding half plane by the FDM is unnecessary. In sum, the hybrid FDM-BEM technique is able to quantify dependence of the signals that develop at the free surface to the following key parameters: seismic source properties and heterogeneous structure of the wave path (the FDM component) and near-surface geological deposits containing discontinuities in the form of tunnels (the BEM component). Finally, the hybrid technique is used for evaluating the seismic wave field that develops within a key geological cross-section of the Metro construction project in Thessaloniki, Greece, which includes the important Roman-era historical monument of Rotunda dating from the 3rd century A.D.

건식제조법에 의해 생산된 고품질 재생산골재의 활용성 검토를 위한 실험적 연구 (An Experimental Study on Investigation for Application of High Quality Recycled Fine Aggregate Produced by Dry Manufacturing Method)

  • 문형재;구경모;노경민;조봉석;김규용;김무한
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2005년도 추계 학술논문 발표대회
    • /
    • pp.29-32
    • /
    • 2005
  • Recently, for the problem solution of demand and supply imbalance of fine aggregate due to the shortage of natural fine aggregate and the environment regulation on sea sand extraction in the construction field, the studies for the application of recycled fine aggregate using waste concrete are being progressed versatilely. The purpose of this study is to investigate quality of recycled fine aggregate manufactured by drying manufacturing system which is the manufacture method of high duality recycled fine aggregate, and to analyze on thehardened and durability properties of recycled concrete using it. Therefore it is to present the fundamental data for application and utilization of recycled concrete. The results of this study are as follows; Quality of recycled fine aggregate by drying manufacturing system is improved, and compressive strength, carbonation depth and chloride ion penetration depth of recycled concrete using high quality recycled fine aggregate are similar to those of normal concrete using natural and crashed sand. But, resistance to $H_{2}SO_{4}$ show decreased somewhat.

  • PDF

WDM 링에서의 ADM 최소화 문제에 대한 분지평가 해법 (A Branch-and-price Algorithm for the Minimum ADM Problem on WDM Ring Networks)

  • 정지복
    • 한국경영과학회지
    • /
    • 제32권4호
    • /
    • pp.51-60
    • /
    • 2007
  • In this study, we consider the minimum ADM problem which is the fundamental problem for the cost-effective design of SONET ADM embedded in WDM ring networks. To minimize the number of SONET ADMs, efficient algorithms for the routing and wavelength assignment are needed. We propose a mathematical model based on the graph theory for the problem and propose a branch-and-price approach to solve the suggested model effectively within reasonable time. By exploiting the mathematical structure of ring networks, we developed polynomial time algorithms for column generation subroutine at branch-and-bound tree. In a computer simulation study, the suggested approach can find the optimal solution for sufficient size networks and shows better performance than the greedy heuristic method.