• Title/Summary/Keyword: method of fundamental solution

Search Result 244, Processing Time 0.027 seconds

A Permeable Wedge Crack in a Piezoelectric Material Under Antiplane Deformation (면외변형하의 압전재료에 대한 침투 쐐기균열)

  • Choi, Sung Ryul;Park, Jai Hak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.9
    • /
    • pp.859-869
    • /
    • 2015
  • In this study, we analyze the problem of wedge cracks, which are geometrically unsymmetrical in transversely piezoelectric materials. A single concentrated antiplane mechanical load and inplane electrical load are applied at the point of the wedge surface, while one concentrated antiplane load is applied at the crack surface. The crack surfaces are considered as permeable thin slits, where both the normal component of electric displacement and the electric potential are assumed to be continuous across these slits. Using Mellin transform method, the problem is formulated and the Wiener-Hopf equation is derived. By solving the equation, the solution is obtained in a closed form. The intensity factors of the stress and the electric displacement are obtained for any crack length as well as inclined and wedge angles. Based on the results, the intensity factors are independent of the applied electric loads. The electric displacement intensity factor is always dependent on that of stress intensity factor, while the electric field intensity factor is zero. In addition, the energy release rate is computed. These solutions can be used as fundamental solutions which can be superposed to arbitrary electromechanical loadings.

Fast triangle flip bat algorithm based on curve strategy and rank transformation to improve DV-Hop performance

  • Cai, Xingjuan;Geng, Shaojin;Wang, Penghong;Wang, Lei;Wu, Qidi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.12
    • /
    • pp.5785-5804
    • /
    • 2019
  • The information of localization is a fundamental requirement in wireless sensor network (WSN). The method of distance vector-hop (DV-Hop), a range-free localization algorithm, can locate the ordinary nodes by utilizing the connectivity and multi-hop transmission. However, the error of the estimated distance between the beacon nodes and ordinary nodes is too large. In order to enhance the positioning precision of DV-Hop, fast triangle flip bat algorithm, which is based on curve strategy and rank transformation (FTBA-TCR) is proposed. The rank is introduced to directly select individuals in the population of each generation, which arranges all individuals according to their merits and a threshold is set to get the better solution. To test the algorithm performance, the CEC2013 test suite is used to check out the algorithm's performance. Meanwhile, there are four other algorithms are compared with the proposed algorithm. The results show that our algorithm is greater than other algorithms. And this algorithm is used to enhance the performance of DV-Hop algorithm. The results show that the proposed algorithm receives the lower average localization error and the best performance by comparing with the other algorithms.

Some Basic Investigation on Wireless Power Transfer (무선 전력 전송에 관한 기본적인 고찰)

  • Park, Jongmin;Nam, Sangwook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.10
    • /
    • pp.959-965
    • /
    • 2014
  • This paper summarizes the previous research results of fundamental investigation done in SNU on the wireless power transfer. Firstly, the physical limitation of a wireless power transfer using the spherical modes is reviewed. It is found that wireless power transfer depends only on the radiation efficiency of the antennas and the distance between two antennas involved. Secondly, we review the characteristics of WPTS with different sources and compare the performance differences of WPTS according to the source type. In addition, the method for efficient WPTS is suggested when the distance between antennas is varied. Finally, by using the time domain solution of the coupled mode equation, we present an analytic formula which can be used to differentiate Inductive Coupling(IC) and Magnetic Resonance Coupling(MAC) which are often used ambiguously in wireless power transfer system.

Technology and Policy for Blockchain-based Spectrum Sharing (블록체인 기반의 전파 공유 기술과 전파 정책)

  • Shin, Na Yeon;Nam, Ji-Hyun;Choi, Ye Jin;Lee, Il-Gu
    • Journal of Digital Convergence
    • /
    • v.17 no.10
    • /
    • pp.13-21
    • /
    • 2019
  • The restricted network or the unbalanced distribution of spectrum is causing the problems of lack of spectrum resources and deterioration of the service quality. In addition, the existing centralized radio sharing method has not been a fundamental solution for radio sharing and is inefficient in terms of cost, convenience, and security. In this paper, we propose a blockchain-based spectrum sharing as a low-cost, trustworthy, high-efficiency platform that can distribute and share spectrum resources, and propose policies to realize this. In the spectrum sharing platform, spectrum information about Wi-Fi AP and LTE mobile hotspot is registered in the blockchain, and spectrum sharers and users can conclude peer-to-peer spectrum sharing contract quickly and efficiently through smart contract. The pay for the shared spectrum resources and reward for spectrum quality management open platform ecosystem to activate the circulation-sharing and it can provide a convenient and efficient public wireless infrastructure.

Unsteady Thermoelasic Deformation and Stress Analysis of a FGM Rectangular Plate (경사기능재료 사각 판의 비정상 열 탄생변형과 응력해석)

  • Kim, Kui-Seob
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.8
    • /
    • pp.91-100
    • /
    • 2004
  • A Green's function approach is adopted for analyzing the thermoelastic deformations and stresses of a plate made of functionally graded materials(FGMs). The solution to the 3-dimensional unsteady temperature is obtained by using the laminate theory. The fundamental equations for thermoelastic problems are derived in terms of out-plane deformation and in-plane force, separately. The thermoelastic deformation and the stress distributions due to the bending and in-plane forces are analyzed by using a Green's function based on the Galerkin method. The eigenfunctions of the Galerkin Green's function for the thermoelastic deformation and the stress distributions are approximated in terms of a series of admissible functions that satisfy the homogeneous boundary conditions of the rectangular plate. Numerical analysis for a simply supported plate is carried out and effects of material properties on unsteady thermoclastic behaviors are discussed.

Study on Eigenvalue Analysis for a Towed Cable - Free Boundary at the Bottom End (예인되는 케이블의 고유치 해석에 관한 연구 - 하부 끝단 자유 경계조건)

  • Jung, Dong-Ho;Kim, Hyeon-Ju;Moon, Deok-Soo;Lee, Seung-Won
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.74-80
    • /
    • 2009
  • In this study, the static and modal analyses to find the characteristic of eigenvalues for a towed cable were with a free boundary condition at the bottom end carried out with numerical study. The resulting numerical code with finite element method was used to study sample problems for a cable with towing speeds. After tracing the equilibrium state with a towing speed through the static analysis, modal analysis on the basis of static results was performed. The static top tension for a critical towing speed is nearly 50 percent of what it was for a free hanging pipe. From static analyses, it is found that towing speed has a noticeable effect on top tension of a towed pipe. At a high towing speed, differences between the first and second periods become larger. Compared to the fundamental period for a free hanging pipe, that for a towed pipe with a critical towing speed is approximately 1.4 times larger. This result is very important point in that the lock in condition and tension of the towed cable system with top excitation can be predicted. The corrected close form solution to solve natural periods for a towed cable was presented in this study. The code is validated by comparison of the results of theoretical and numerical studies. Two results were in very good agreement. This study can contribute to predicting the lock-in condition and tension for a towed cable or pipe with top excitation.

Compact Implementation of Multiplication on ARM Cortex-M3 Processors (ARM Cortex-M3 상에서 곱셈 연산 최적화 구현)

  • Seo, Hwa-jeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.9
    • /
    • pp.1257-1263
    • /
    • 2018
  • Secure authentication technology is a fundamental building block for secure services for Internet of Things devices. Particularly, the multiplication operation is a core operation of public key cryptography, such as RSA, ECC, and SIDH. However, modern low-power processor, namely ARM Cortex-M3 processor, is not secure enough for practical usages, since it executes the multiplication operation in variable-time depending on the input length. When the execution is performed in variable-time, the attacker can extract the password from the measured timing. In order to resolve this issue, recent work presented constant-time solution for multiplication operation. However, the implementation still missed various speed-optimization techniques. In this paper, we analyze previous multiplication methods over ARM Cortex-M3 and provide optimized implementations to accelerate the speed-performance further. The proposed method successfully accelerates the execution-time by up-to 25.7% than previous works.

Disaster and Artistic Measures: Hermann Josef Hack's Project of World Climate Refugee Camp (재난과 미술적 대응: 헤르만 조셉 하크(Hermann Josef Hack)의 기후난민 프로젝트)

  • Kim, Hyang-Sook
    • The Journal of Art Theory & Practice
    • /
    • no.14
    • /
    • pp.53-83
    • /
    • 2012
  • This thesis is a study of artistic measures and climate refugees, based on Hack's World Climate Refugee Camp project. According to Hack, climate refugees appeared with the process of globalization. Hack claimed that the people who put climate refugees in danger are the industrialized nations, and therefore, their rejection of refugees is nonsense. He also stated that the fundamental solution would be the active participation of such nations. Thus, he travels around the world, encouraging participants and globalizing his project. Interestingly, the practical participation method of his climate calamity project is divided into four methods, which are all related to realizing the danger and presenting various solutions. First, the aesthetic of survival: the reason Hack focused on the warming trend and claimed that we have to accept the climate refugees as refugees comes from the thought that we are all potential refugees, and the anxiety that climate refugees may cause war in the end. The solution Hack found for surviving in such a world is to create "refugee camps" to notify people about the seriousness of climate change, and to put the "aesthetic for survival" in action. Second, a relation-oriented relationship: communication between Hack and the participants was done in various ways. They are experiencing a bond and emotions of an interrelationship through their actions in the experimental field, experiencing a new form of art, which they were not able to experience in a museum. Third, a utopian measure: Hack's utopian measure started from the fear of dystopia but Hack still believes that it is not only a dream, but that it can be realized. He claims that even though the start may be feeble, it is possible to rescue children from starvation and to treat climate refugees as proper human in the end, when communication and cooperation is done the right way and properly. Fourth, the aesthetic of global relation, the internet: the new solution Hack is trying on the internet is to make more people participate in his project. It is fate that "human are the wrongdoer and the victim at the same time", but according to Hack's opinion, social disaster can be avoided through effort and it is optimistic that we can give form to the culture revolution we are experiencing now. Hack's project illustrated the importance of daily life, compared to art inside a museum, through active participation of the people and opened up a new method of art through realistic responses to disasters. This is distinctive from the past exhibitions, where artists gave shape and form to ideals and an imaginary world, in that it shows that the artist and audience aim for creating a community-like structure, just like Bourriaud's art method. Hack's project of climate calamity illustrates that installation and action art is not only an art genre which shows installation and activities, but that it can include social and political issues and that it can be completed with the help of participants, consequently becoming a genre of modern art. Hack raises a question about art's identity through various descriptions. Artists as planners, who base their artworks on their subjectivity or the characteristics of a specific period, the people as participants, the duet of art work and play, human and human, and further, human and nature. The practical participation method, as a measure for "disaster", reveals the new art of the 21st century within Hack's artworks. Even though there are several problems with Hack's usage of art as a measure for disaster, it will actively open up a new page for the 21st century's art with the theme of disaster.

  • PDF

Free Vibration Analysis of Circular Arches Considering Effects of Midsurface Extension and Rotatory Inertia Using the Method of Differential Quadrature (미분구적법을 이용 중면신장 및 회전관성의 영향을 고려한 원형아치의 고유진동해석)

  • Kang, Ki-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.9-17
    • /
    • 2021
  • Curved beams are increasingly used in buildings, vehicles, ships, and aircraft, which has resulted in considerable effort being directed toward developing an accurate method for analyzing the dynamic behavior of such structures. The stability behavior of elastic circular arches has been the subject of a large number of investigations. One of the efficient procedures for the solution of ordinary differential equations or partial differential equations is the differential quadrature method DQM. This method has been applied to a large number of cases to overcome the difficulties of the complex computer algorithms, as well as excessive use of storage due to conditions of non-linear geometries, loadings, or material properties. This study uses DQM to analyze the in-plane vibration of the circular arches considering the effects of midsurface extension and rotatory inertia. Fundamental frequency parameters are calculated for the member with various parameter ratios, boundary conditions, and opening angles. The solutions from DQM are compared with exact solutions or other numerical solutions for cases in which they are available and given to analyze the effects of midsurface extension and rotatory inertia on the frequency parameters of the circular arches.

Precise Estimation of Nonlinear Parameter in Pulse-Like Ultrasonic Signal (펄스형 초음파 신호에서 비선형 파라미터의 정밀 추정)

  • Ha, Job;Jhang, Kyung-Young;Sasaki, Kimio;Tanaka, Hiroaki
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.2
    • /
    • pp.77-83
    • /
    • 2006
  • Ultrasonic nonlinearity has been considered as a solution for the detection of microcracks or interfacial delamination in a layered structure. The distinguished phenomenon in nonlinear ultrasonics is the generation of higher-order harmonic waves during the propagation. Therefore, in order to quantify the nonlinearity, the conventional method measures a parameter defined as the amplitude ratio of a second-order harmonic component and a fundamental frequency component included in the propagated ultrasonic wave signal. However, its application In field inspection is not easy at the present stage because no standard methodology has yet been made to accurately estimate this parameter. Thus, the aim of this paper is to propose an advanced signal processing technique for the precise estimation of a nonlinear ultrasonic parameter, which is based on power spectral and bispectral analysis. The method of estimating power spectrum and bispectrum of the pulse-like ultrasonic wave signal used in the commercial SAM (scanning acoustic microscopy) equipment is especially considered in this study The usefulness of the proposed method Is confirmed by experiments for a Newton ring with a continuous air gap between two glasses and a real semiconductor sample with local delaminations. The results show that the nonlinear parameter obtained tv the proposed method had a good correlation with the delamination.