• Title/Summary/Keyword: method of fundamental solution

Search Result 244, Processing Time 0.025 seconds

Numerical Analysis of a Two-Dimensional N-P-N Bipolar Transistor-BIPOLE (2차원 N-P-N 바이폴라 트랜지스터의 수치해석-BIPOLE)

  • 이종화
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.21 no.2
    • /
    • pp.71-82
    • /
    • 1984
  • A programme, called BIPOLE, for the numerical analysis of twotimensional n-p-n bipolar transistors was developed. It has included the SRH and Auger recolnbination processes, the mobility dependence on the impurity density and the electric field, and the band-gap narrowing effect. The finite difference equations of the fundamental semiconductor equations are formulated using Newton's method for Poisson's equation and the divergence theorem for the hole and electron continuity equations without physical restrictions. The matrix of the linearized equations is sparse, symmetric M-matrix. For the solution of the linearized equations ICCG method and Gummel's algorithm have been employed. The programme BIPOLE has been applied to various kinds of the steady-state problems of n-p-n transistors. For the examples of applications the variations of common emitter current gain, emitter and diffusion capacitances, and input and output characteristics are calculated. Three-dimensional representations of some D.C. physical quantities such as potential and charge carrier distributions were displayed. This programme will be used for the nome,rical analysis of the distortion phenom ana of two-dimensional n-p-n transistors. The BIPOLE programme is available for everyone.

  • PDF

Maintenance of the Sea-crossing Bridge for Ship Collision Problems (선박충돌 문제에 대한 해상교량의 유지관리)

  • Bae, Yong-Gwi;Lee, Seong-Lo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.6
    • /
    • pp.56-64
    • /
    • 2016
  • Damage of sea-crossing bridge by ship collision is related to estimate frequencies of overloading due to impact, and bridge accordingly must be designed to satisfy related acceptance criteria. Another important aspect is the management on increment of collision risk during the service period. In this study, related plan, main span length, air draft clearance and collision risk are analyzed for the interim assessment of Incheon Bridge focusing on the ship collision problem. In particular, for the increment of collision risk, the optimized navigation speed is proposed by reviewing the research findings and navigation guidelines etc. as a temporary expedient. Also basic procedure for reasonable prediction of target vessel and passage is established and probabilistic prediction method to embrace the uncertainty of the prediction is proposed as a fundamental solution. It is necessary to conduct further research on collision risk management and promptly carry out interim assessments of other marine bridges.

Laterally Loaded Soil-Pile Interaction Analysis in Frequency Domain (횡하중을 받는 지반-말뚝 상호작용계의 동적 주파수 응답해석)

  • 김문겸;임윤묵;김민규;조석호
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.4
    • /
    • pp.437-448
    • /
    • 2000
  • In this study, a numerical analysis method for soil-pile interaction in frequency domain problem is presented. The total soil-pile interaction system is divided into two parts so called near field and far field. In the near field, beam elements are used lot a pile and plain strain finite elements for soil. In the far field, dynamic fundamental solution for multi-layered half planes based on boundary element formulation is adopted lot soil. These two fields are coupled using FE-BE coupling technique. In order to verify the proposed soil-pile interaction analysis, the dynamic responses of pile on multi-layered half planes are simulated and the results are compared with the experimental results. Also, various numerical analyses of piles considering different conditions of soil-pile interaction system are performed to examine the dynamic behavior of the system. It has been found that the developed method which satisfies the radiation conditions of multi-layered half planes can be applied to various structure systems effectively in frequency domain.

  • PDF

An analytic solution for the stirling engines with saw-toothed piston motions in adiabatic cylinders (단열실린더내에서 톱날파형 피스톤운동을 하는 스터링기관에 대한 해석적인 해)

  • 유호선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1197-1205
    • /
    • 1988
  • An analytical method to predict qualitative performance characteristics of the Stirling Engines in the preliminary design stages is investigated. Both the expansion and the compression cylinder are treated as adiabatic and piston motions are approximated as saw-toothed waves. Basic equations which were originally proposed by Finkelstein consist of mass conservation and energy balances for each adiabatic cylinder. The approximation on piston motions and physical conditions make it possible to divide an engine cycle into four fundamental processes. In each process, first, pressure can be expressed as a function of the crank angle by solving a nonlinear first order ordinary differential equation and other thermodynamic variables are determined in turn. Application of the cyclic steady condition to the whole processes can complete a cycle. Also, further analysis results in analytic expressions for cyclic work and heat transfer in terms of the engine parameters and thermodynamic variables at boundary points. The results are expected useful as a quick reference for the engine performances. Finally, the present method can be applied to the other adiabatic analyses on the Stirling Engines with piece wise linear piston motions, if mass variations are predictable.

Fundamental Process Development for Bio-degradable Polymer Deposition and Fabrication of Post Surgical Anti-adhesion Barrier Using the Process (생분해성 고분자 용착을 위한 기반 공정 개발과 이를 이용한 수술 후 유착 방지막의 제작)

  • Park, Suk-Hee;Kim, Hyo-Chan;Kim, Taek-Gyoung;Jung, Hyun-Jeong;Park, Tae-Gwan;Yang, Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.4 s.193
    • /
    • pp.138-146
    • /
    • 2007
  • Some biodegradable polymers and other materials such as hydrogels have shown the promising potential for surgical applications. Post surgical adhesion caused by the natural consequence of surgical wound healing results in repeated surgery and harmful effects. Recently, scientists have developed absorbable anti-adhesion barriers that can protect a tissue from adhesion in case they are in use; however, they are dissolved when no longer needed. Although these approaches have been attempted to fulfill the criteria for adhesion prevention, none can perfectly prevent adhesions in all situations. Overall, we developed a new method to fabricate an anti-adhesion membrane using biodegradable polymer and hydrogel. It employed a highly accurate three-dimensional positioning system with pressure-controlled syringe to deposit biopolymer solution. The pressure-activated microsyringe was equipped with fine-bore nozzles of various inner-diameters. This process allowed that inner and outer shapes could be controlled arbitrarily when it was applied to a surgical region with arbitrary shapes. In order to fulfill the properties of the ideal barriers f3r preventing postoperative adhesion, we adopted the pre-mentioned method combined with surface modification with the hydrogel coating by which anti-adhesion property was improved.

Dielectric and Optical Properties of InP Quantum Dot Thin Films

  • Mohapatra, Priyaranjan;Dung, Mai Xuan;Choi, Jin-Kyu;Oh, Jun-Ho;Jeong, Hyun-Dam
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.280-280
    • /
    • 2010
  • Semiconductor quantum dots are of great interest for both fundamental research and industrial applications due to their unique size dependant properties. The most promising application of colloidal semiconductor nanocrystals (quantum dots or QDs) is probably as emitters in biomedical labeling, LEDs, lasers etc. As compared to II-VI quantum dots, III-V have attracted greater interest owing to their less ionic lattice, larger exciton diameters and reduced toxicity. Among the III-V semiconductor quantum dots, Indium Phosphide (InP) is a popular material due to its bulk band gap of 1.35 (eV) which is responsible for the photoluminescence emission wavelength ranging from blue to near infrared with change in size of QDs. Nevertheless, in recent years, the exact type of collective properties that arise when semiconductor quantum dots (QDs) are assembled into two- or three-dimensional arrays has drawn much interest. The term "uantum dot solids" is used to indicate three-dimensional assemblies of semiconductor QDs. The optoelectronic properties of the quantum dot solids are known to depend on the electronic structure of the individual quantum dot building blocks and on their electronic interactions. This paper reports an efficient and rapid method to produce highly luminescent and monodisperse quantum dots solution and solid through fabrication of InP thin films. By varying the molar concentration of Indium to Ligand, QDs of different size were prepared. The absorption and emission behaviors were also studied. Similar measurements were also performed on InP quantum dot solid by fabricating InP thin films. The optical properties of the thin films are measured at different curing temperatures which show a blue shift with increase in temperature. The dielectric properties of the thin films were also investigated by Capacitance-voltage(C-V) measurements in a metal-insulator-semiconductor (MIS) device.

  • PDF

Fundamental Studies on the Calcium Precipitation for the Reuse of Wastewater Containing Phosphate (칼슘 침전처리에 의한 인산폐수 재사용에 관한 연구)

  • Kim Yaung-Im;Kim Dong-Su
    • Resources Recycling
    • /
    • v.12 no.4
    • /
    • pp.38-43
    • /
    • 2003
  • Phosphate is an essential material for the growth of organisms. However. since relatively small amount is required. a large amount of phosphate is abandoned in wastes and wastewater. which contaminate the ecological environment including aquatic system. Purpose of this study is to treat especially high concentrated phosphate wastewater by use of calcium precipitation method. The pH range considered was from 6 to 12 and the maximum removal of phosphate was attained at pH 12. The con-centration of phosphate was observed to decrease rapidly until a half amount of calcium ion to its equivalent for the formation of calcium phosphate precipitate was added. which resulted in the decrease of the remaining concentration of phosphate down to 0.0027 mM. The effect of fluoride ion was examined and the concentration ratio between the phosphate and fluoride ion did not have any significant influence on the removal efficiency of phosphate. The effect of pH was also investigated. With the increasing of the pH in solution, the removal rate of phosphate was increased. Also it was investigated that the effect of fluoride on the phosphate removal was not significant.

A study on the combination of transmedia and gamification and the structure of game design (트랜스미디어와 게이미피케이션의 결합과 게임 디자인의 구조에 대한 고찰)

  • CHO, Il-hyun
    • Journal of Digital Convergence
    • /
    • v.18 no.4
    • /
    • pp.433-438
    • /
    • 2020
  • With the rapid development of media environment and contents production technology, the era of multi-platform convergence transmedia has emerged, and communication method through trans media contents has attracted attention. Transmedia content refers to the concept of translating individual content into multi-platforms, which creates an expanded worldview of convergence. In addition, the interaction generated in this process is very important and difficult to control in the progress of the content. In this paper, we focused on the combination of transmedia content and gamification concept as a solution, and based on the 'MDA framework' which is a theoretical system of analysis and approach for implementing game design, We looked at the structure. It is expected that a review of the fundamental game design structure, which establishes a prediction system of value and fun experiences through the balance of technology and emotions, will be helpful as a basis for designing trans media contents.

State-Based Behavior Modeling in Software and Systems Engineering

  • Sabah Al-Fedaghi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.5
    • /
    • pp.21-32
    • /
    • 2023
  • The design of complex man-made systems mostly involves a conceptual modeling phase; therefore, it is important to ensure an appropriate analysis method for these models. A key concept for such analysis is the development of a diagramming technique (e.g., UML) because diagrams can describe entities and processes and emphasize important aspects of the systems being described. The analysis also includes an examination of ontological concepts such as states and events, which are used as a basis for the modeling process. Studying fundamental concepts allows us to understand more deeply the relationship between these concepts and modeling frameworks. In this paper, we critically analyze the classic definition of a state utilizing the Thinging machine (TM) model. States in state machine diagrams are considered the appropriate basis for modeling system behavioral aspects. Despite its wide application in hardware design, the integration of a state machine model into a software system's modeling requirements increased the difficulty of graphical representation (e.g., integration between structural and behavioral diagrams). To understand such a problem, in this paper, we project (create an equivalent representation of) states in TM machines. As a case study, we re-modeled a state machine of an assembly line system in a TM. Additionally, we added possible triggers (transitions) of the given states to the TM representation. The outcome is a complicated picture of assembly line behavior. Therefore, as an alternative solution, we re-modeled the assembly line based solely on the TM. This new model presents a clear contrast between state-based modeling of assembly line behavior and the TM approach. The TM modeling seems more systematic than its counterpart, the state machine, and its notions are well defined. In a TM, states are just compound events. A model of a more complex system than the one in the assembly line has strengthened such a conclusion.

Axisymmetric vibration analysis of a sandwich porous plate in thermal environment rested on Kerr foundation

  • Zhang, Zhe;Yang, Qijian;Jin, Cong
    • Steel and Composite Structures
    • /
    • v.43 no.5
    • /
    • pp.581-601
    • /
    • 2022
  • The main objective of this research work is to investigate the free vibration behavior of annular sandwich plates resting on the Kerr foundation at thermal conditions. This sandwich configuration is composed of two FGM face sheets as coating layer and a porous GPLRC (GPL reinforced composite) core. It is supposed that the GPL nanofillers and the porosity coefficient vary continuously along the core thickness direction. To model closed-cell FG porous material reinforced with GPLs, Halpin-Tsai micromechanical modeling in conjunction with Gaussian-Random field scheme is used, while the Poisson's ratio and density are computed by the rule of mixtures. Besides, the material properties of two FGM face sheets change continuously through the thickness according to the power-law distribution. To capture fundamental frequencies of the annular sandwich plate resting on the Kerr foundation in a thermal environment, the analysis procedure is with the aid of Reddy's shear-deformation plate theory based high-order shear deformation plate theory (HSDT) to derive and solve the equations of motion and boundary conditions. The governing equations together with related boundary conditions are discretized using the generalized differential quadrature (GDQ) method in the spatial domain. Numerical results are compared with those published in the literature to examine the accuracy and validity of the present approach. A parametric solution for temperature variation across the thickness of the sandwich plate is employed taking into account the thermal conductivity, the inhomogeneity parameter, and the sandwich schemes. The numerical results indicate the influence of volume fraction index, GPLs volume fraction, porosity coefficient, three independent coefficients of Kerr elastic foundation, and temperature difference on the free vibration behavior of annular sandwich plate. This study provides essential information to engineers seeking innovative ways to promote composite structures in a practical way.