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Numerical Analysis of a Two-Dimensional N-P-N
Bipolar Transistor-BIPOLE
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Abstract

A programme, called BIPOLE, for the numerical analysis of two-dimensional n-p-n
bipolar transistors was developed. It has included the SRH and Auger recombination pro-
cesses, the mobility dependence on the impurity density and the electric field, and the
band-gap narrowing effect.

The finite difference equations of the fundamental semiconductor equations are for-
mulated using Newton’s method for Poisson’s equation and the divergence theorem for
the hole and electron continuity equations without physical restrictions,

The matrix of the linearized equations is sparse, symmetric M-matrix. For the solution
of the linearized equations ICCG method and Gummel’s algorithm have been employed,

The programme BIPOLE has been applied to various kinds of the steady-state problems
of n-p-n transistors, For the examples of applications the variations of common emitter
current gain, emitter and diffusion capacitances, and input and output characteristics are
calculated, Three-dimensional representations of some D.C. physical quantities such as
potential and charge carrier distributions were displayed. This programme will be used
for the numerical analysis of the distortion phenomena of two-dimensional n-p-n transistors,
The BIPOLE programme is available for everyone,

I. Introduction

*E®A, FMUTHAR s T®ERH

(Dept. of Materials Science, Ulsan Institute of The rigorous numerical modelling approach
Technology) is a powerful tool for the description of bipolar
BEXHT 1984 2A 3A transistors and for the optimization of process

(% & @S 1983EE FLUTHAZY BAHRER design without the conventional restrictions.
ksl HAEUR.) This solution method was developed and
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applied for the first time by Gummel. [}

Since then a number of authors extended
the Gummel’s one-dimensional iterative method
to two-dimensional porblems and improved
the finite difference method for the application
to various semiconductor devices,[21-4]
De Mari‘[S]

static and dynamic operation of the p-n diode,
(6]

for example, simulated the

Tomizawa developed a simulator for two

dimensional bipolar transistors, Kennedy”l
studied with the JFET, and Selberherr!®
attempted a two-dimensional calculation for
the MOS transistor.

For the two-dimensional analysis of silicon

[9,10}

n-p-n transistors Heimeier described a

very efficient method. However, he did not
include the high doping effect in his model.

Today the very large scale integration
(VLSH) is a sophisticated technology which
absolutely requires computer aided simulation
of its devices. Especially because of the ad-
vancing rate of miniaturization one is com-
pelled to use numerical models with increased
accuracy and without fundamental physical
restrictions.

In this work a computer programme was
developed, called BIPOLE; a programme aimed
at consistent numerical simulation of bipolar
transistors, It will be used for the numerical
analysis of the distortion and a.c. problems of
bipolar transistors in the near future,

Three-dimensional computer graphics of
some D.C. physical quantities are represented.
Some applications are given for the purpose of
demonstrating the use of BIPOLE.

II. The Physical Model

In order to accurately analyze a semicon-
ductor structure under given circumstances,
a system of the basic semiconductor equations
must be solved, and in order to exactly model
the system of equations only the inevitable
assumptions for the mathematical descriptions
of all the physical parameters and variables of

the equations must be touched upon.

1. The Basic Semiconductor Equations

1984% 30 HWrLBGE H20 & $£ 25

The fundamental semiconductor equations
consist of Poisson’s equation, continuity

equations, and current equations.u”

div grad § = _.e‘l * (p-n+N) (1)

divi_ =q- 2R 4q-R (2)
n ot -

div] =—q'§2—q'R (3)
p ot

jn = q(—n-un'gradd/ + Dn'grad n) (4)

T =da(-ney - dy - .

Jp = al-pru-grady D ,grad p) (5)

e J

J=Jp+Jn—e' at(gradw) (6)

where all the symbols have their conventional
meanings.

Almost all of the transport phenomena in a
semiconductor device can be described in
principle with this set of equations except only
a few effects, e.g., the heat transfer pheno-
menon due to power dissipation and the de-
generacy phenomenon due to high doping.

2. The Assumptions

For the exact numerical analysis of a semi-
conductor device only the inevitable assump-
tions have to be touched upon. However, some
assumptions in the present work might signifi-
cantly simplify the solution of the equations
without a considerable loss of accuracy, and
improve the computational speed.

Some important assumptions which have
been established in the present work are as
follows.

i} Only steady-state solutions are sought. This
assumption significantly reduces the order of
the partial differential equations and changes
the finite difference equation formulation.
By way of the suppression of the time de-
g)cndent terms (i.e. —a{—) = 0,—2—?— =0, and
E)L“?’a'r{'ig}p—):0) a parabolic problem is con-
verted to an elliptic problem.

ii) The total ionization of the donor and

acceptor impurities will be assumed, ie.,
=Nt - =
N—ND—NA—ND—NA (7

iii) The operating temperature throughout the
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entire transistor is constant and assumed to
be equal 300°K. All the physical parameters,
therefore, are quoted the values at 300°K.
iv) The electron temperature is assumed to be
equal to the crystal lattice temperature, The
hot electron effect is neglected.

v) The heavy doping and degeneracy effects
will be considered only by the effective in-
trinsic carrier density(nie). By way of this
assumption and of the neglection of the asym-
metric between conduction and valence bands
the carrier distribution will be described by
Boltzmann statistics.

n=n; exp((w~¢>n)/VT) (8)

P =1, exp ((¢p*¢ )/VT ) (9)

vi) The Einstein relation is assumed to be valid.
Dn Bl VT (10)

= -V, 11
Dp=u, Yy (1y

vii) All the contacts are assumed to be ohmic.
The space charge vanishes at the contacts, and
the carrier distribution is in the thermal equili-
brium. At all the other boundaries except the
contacts the normal derivatives of potentials
are considered to be zero and the normal
component of the current density will vanish
there. These assumptions will be used for
the boundary conditions in the semiconductor

device,
3. The Physical Parameters

The general basic semiconductor equations
(1)-(6) contain several physical parameters
of which the accuracy directly determines the
quantitative validity of the total simulation
results. The important physical parameters
used in the present model are the carrier
mobility; u the net recombination rate;
R

n’ lJp,
the effective intrinsic carrier density; n.,

k4 b

and the doping profile,

i) Mobilities: The mobility in general depends
on several factors. The experimental depen-
dence of carrier mobilities on doping density
(N and field strength(E) in silicon is well-

described by Caughey and Thomas?! . Their
empirical formula for doping dependence of
mobility is of the form;

Hmax ~#min
R TR (12)
1+(Nt/Nref)
and the field dependence of mobility is as
follows:
(E)=Y= (1 +(B/E )Py 1P (13)
HAE) =TF= Ky c

where u, = Vm/EC; zero-field mobility, and
N = IN T+ N

The best-fitting parameter values of these
equations at room temperature are quoted
from ref. [12].

A modified mobility relationship u(Nt,E)
is used in this work by assuming Ko = u(Nt)
and E, to be a function of doping density,
ie, E = V_ /(N ) and E_ to be a function
of doping density, ie., Ec = V_/u(N)), trea-
ting V_ as a constant, then the mobility
relationship is of the form;

N
HN) (14)

MN E) = -
F N - TRV DI

il) Recombination rate: The dominant re-
combination-generation process in a silicon
bipolar transistor is normally the Shockley-

Read-Hall (Rgpy)
[13,14]

recombination mecha-

nism The Auger recombination me-
chanism will, however, be significant at highly
doped region. The generation rate term due
to the impact or avalanche ionization mecha-
nism and band-to-band recombination terms
are neglected in this work.

RSRH model will be simplified by assuming
the recombination centres to be in the middle
of the energy gap as a single level. Then the
simplest expression is written as follows:

nP -~ nzie

R = .
SRH + F ¥
‘rpo(n nie) Tno(p nie)

(15)

where Mo is the effective intrinsic carrier

concentration, the limiting lifetimes of the
minority carrier; Tpo and Tho &re assumed
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constant with the relation of Tpo = 0.2 Tho
Under the condition of low-level injection
the Auger recombination mechanism can be
written as follows;

- 2 2 2 2
Rauger = Cp(np -n,p, )+ Ch(n®p-ngp,)

=(Cyrn+Cprp) - (np-ng)  (16)

Net recombination rate is expressed by
R= RSRH‘*'RAuger (17
iii) The effective intrinsic carrier density:

The presence of the heavily doped impurities
causes the semiconductor to behave as though
its energy gap had been decreased by an a-
mount AEg due to band edge tailing corres-
ponding to a mobility band edge.

This bandgap narrowing effect causes the
p-n product to increase as follows!!5! ;
pn= nie2 (Nt’ T)

= ni2 (T)*exp(qAVgo(N )/kT) (18)
and the bandgap narrowing will be expressed

by the following formulall5]

AVEo(N)) = 9x107 -(In(N) ++/(In(NY + 1/2) (V)

(19)
where N = Nt/IO17

iv) The diffused
layers are formed in a two-step process; pre-

doping profile: Typically,

deposition and drive-in steps. The solution
of Fick’s second law in drive-in step takes
well-known Gaussian distribution form.

The doping profile of two dimensional
drive-in diffusion which is well described by

Kennedy and O’Brien!*®!  {akes the form;
C 2
Y, = exp () * (Ierf(—
47Dt 23/Dt
(20)

where CO/\/;]’)T is the maximum surface con-
centration at y = 0, the last term denotes the
diffusion parallel to the surface.
the parallel diffusion

In this work
is approximated as a
Gaussian distribution form.

The resulting Gaussian-type impurity dis-

)
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Fig. 1. The geometry of the n-p-n transistor
investigated (Dimensions refer to
micrometers).

tribution of the n-p-n transistor structure
shown in Fig. 1 is given by

N(x,y) = Ne(x,y) = Ny *exp(-C; *y*) + Nep
+ Ny exp(-C; *(y-AE)?) (21)

where Ne(x,y) = Nesexp(-C4-y?) for x = OH
Ne(x,y) = Nesexp(~C4 *y?) rexp(-C5*

(OH-x)?) for x<OH
Ne, Nb ; Emitter and base surface con-

centration
Nep ; Collectorepitaxial layer doping
density
Nbu ; Maximum buried layer im-
purity density
AE ; The emitter to collector dis-
tance
OH ; The emitter diffusion window
edge
and Cl ; In(Ny /Nep)/(AE-AD)?
C2  ;In(Ny/Nep)/AC?
€4 ;(In(Ne) - In(N -exp(-C, - AB® )
- Nep)/AB?
Cs5 ;C4/0.8

These constants are obtained by putting the net
impurity concentrations at the junctions to be
zero,

Surface concentrations Ne, N, Nbu and the
epitaxial layer concentration Nep as well as
layer thicknesses and geometrical distances AB,

AC, AD and AE are given as input data.

III. The Numerical Model
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In order to transform a physical model of
a semiconductor to a numerical model, the
fundamental equations should be normalized
for the simplicity of the equations, The nor-
malized equations are linearized to be discre-
tized. The recurrent finite difference equations
are formulated from the differential equations
with the applicable boundary conditions,

1. The Normalization of the Basic Equations

For the purpose of clarity and simplicity the
set of semiconductor equations must be nor-
malized by the appropriate normalization
factors shown in ref. {17].

The final system of the normalized equa-
tions under the assumptions of chapter II is as

follows;
div-grda ¢ = n-p-N (22)
div Jp =-R (23)
div Tn =R (24)
Tn = —Dp'nie'exp(—w)-grad <I>p 25
I,= Dn'nie'exp(tp)'grad '-Dn (26)
n=nexp(y) ¥, 27N
p = exp(-¢)- P, (28)
& and P_ are so-called Slotboom Vari-

ablesl,l[“” which denote the exponential forms
of electron and hole quasi-Fermi potentials;
ie.
= exp(-¢) (29)
@, = exp(p,) (30)

Three main variables to be solved are y, <I>p,
and <I>n instead of Y, ¢n’ and ¢p.

2. The Discretization of Poisson’s Equation
We assume that  is only & off § exact
Yexact = Y+8 (31)

then Poisson’s equation is approximated using
Taylor series.

div grad § - (nt+p)*6
= n-p-N - div grady + o(6?) (32)
If we apply the central substitution for the

second order derivatives of div grad terms,
the finite difference equation of Poisson’s

equation may be written as follows;

Eé

A j T BBy j* OOy + DBy +ES; 4y
=BBi’j (33)
where A = _gj'H, B= —hi'G
D=—h.1'G, E:-j_l‘H

C = (-A-B-D-E+n+p)*G-H
BB = (p-n+N-A‘ d/i’j_l_B' \‘/1_ l’J + (A+B+D+E))

‘l’i,j‘D"l’iﬂ,j : -E'JJUH)-G-H
o it R c Bt
— 5

3. The Discretization of the Continuity
Equations

Before we consider the discretizations of
continuity equatijons, we will use the Slotboom
variables (®_ and €I>n) to avoid the exponential
nonlinearity of quasi-Fermi potentials, and
change the net recombination rate R to solve
the equations implicitly.

The net recombination rate R for the hole
continuity equation can be approximated by
the iternative solutions of mth and (m+1)th

iterations.
RO gm a(;R 4o,
p
=Rm+Rp~<q>g‘“-q>g’) (34)
where Rp=%% . a—?)% (35)

and for the electron continuity equation

m+l _ p,m .Mt gm
R =RT+R (P, -P) (36)
_3R 0N
where Rn— 3n ?ﬁ; (37)

If the hole continuity equation is combined
with the equation (34), then,
L= +
div T =div(~Dp-ny: exp(—y)- grad & " L

--RmER el - Ryept G
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and if we take the volume integral at both
sides of this equation :

Sffdiv (_Dp'nie' exp(—y)-grad LI:I;H )dxdydz
+ [IIR, q:g‘ﬂdxdydz = [ff F dxdydz (39)

= __ m+ . m
where F R Rp cbp

Since all the variables are invariant along

z-direction for two dimensional problem,
the volume integrals can be changed to the

surface intergrals;
Jf div (=D nje exp (~9)- grad @) ax dy
+
+ Ry @] Uaxdy= [fFdxdy  (40)

With the help of a divergence theorem
and a Green-like theorem, the first surface
intergral in the above equation can be transfor-
med into a convolution line integral over the
boundary of subregion as the rectangular
dashed lines shown in Fig. 2.

M- 1 Ry

Fig. 2. Typical nodes for two-dimensional

finite difference equation formulation
(after ref. [8]).

ff div (~Dp-nie - exp (—y) - grad Cbp) dx dy

oP
= —$a (—anP-dy+J - dx) (41)
P> 9 oy
X
where ay =Dy, - nje - exp (—y¥)

Dp'"ie may be considered almost constant

19844 37 BFTUEEE #H21% Hw29w

between two neighbouring mesh points because
Dp decreases and nj, increases with increasing
doping density, and exp (—{) can be expressed
by Bernoulli function, then without subscript
p of &, and «
equation will be written as;

the discretized form of this

I
fa (ax dy +a—y dx)
=G (o (Digy 5 & ) My tay g -
(P, j — Pi /hi) + H-(an(P j4+q —

P et an. (P g — @) e (42)

Under the assumption that all the functions
are smooth in the subregion, the second and
third surface integrals of equation (40) can
be discretized in a common way;

JIFdxdy=F;; G-H (43)

After combination of these discretized equa-
tions one obtains for each inner point (i, j)
a finite difference equation for the hole con-
tinuity equation with the following form;

Aq)i,j-l +B‘I’i-1,j+c‘pi,j+Dq’i+1,j

+Eq>1’]+1 =BB1’J (45)

where A= -H-oy_;/ g.1, B=-Gap._1/hj
D=—G- oy, E = —H ay/g;
= -A-B-D-E+R; -G -H

L =(_RM+ M. G-
BBl,) (-R RpCD)GH

By the similar method one can obtain the
finite difference equation for the electron
continuity equation which is the same for the
hole except the difinition of a, and R

4. The Matrix Consideration and the Itera-
tive Solution Method

We construct the equations for all of the
grid points, which are linear in one set for
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each basic equation, such that each basic
equation can be presented in a linear matrix
form,

Mx =P (46)

Since the mesh is set up with NX+NY points
we can see that the coefficient A of the (NX+1)
st equation is equal to E of the first equation,
similarly D of the 2nd equation equal to B of
the 3rd equation, hence the resulting matrix
is symmetric. Therefore only C, D and E
elements and P pertinent vector will be cal-
culated in the BIPOLE.

The matrix M is a sparse symmetric M-
matrix where M-matrix means that a matrix
A=(aij) is an M-matrix if ai]-SO for i#j, A is
nonsingular and A’!'VQ, In the equation
(46) x represents an unknown vector (i,
q’p, or @) with the length of (NX-2)-(NY-2).
The matrix M in many practical two dimen-
sional problems is of very high rank (NX-2),
(NY-2). As the coefficient matrix of a set of
equations it has five non-zero diagonally
dominant elements in each row.

We will employ a special iterative solution
method for the equation (46) by using the
characteristics of this sparse symmetric M-
matrix. The solution method is called
1ccghtd! (Incomplete Choleski and Conju-
gate Gradient) method because it is based on
the incomplete decomposition of matrix M;
i.e. M=K-—-R and the use on conjugate gradient
method for the acceleration of convergence

rate,

5. The Boundary Conditions and the Grid

(reneration

In order to sufficiently bound the lineariza-
tion and discretization error, we have to pay
attention to the selection of the grid points,
The grid spacing is chosen unequally by consi-
dering the doping density and electro-static
potential,

The boundary conditions are based on the
followings: The contacts will be assumed
to be ohmic. The electrostatic potential will

have the sum of the applied potential and the
built-in potential due to the doping. The quasi-
Fermi potentials for holes and electrons will
be just the applied potentials, i.e., zero at the
emitter contact, VBE at the base and VCE
at the collector following the common emitter
configuration. The hole and electorn imrefs
will be equal at the contacts due to the assump-
tion of the carrier equilibrium distribution.

All the boundary conditions for the n-p-n
transistor with a common emitter configuration
can be summarized as;

1) At the emitter contact

¢n=¢p =0, ¥ = In(Ne/ny,)
ii) At the base contact

¢p=0¢y=Vpg, ¥ =VBg - In(Np/nj)
iii) At the collector contact

¢p=0n=VCE, Y = Vgt In(Npy/nje)

iv) For the symmetric plane or oxide surface

where 1 is the normal direction coordinate at
the boundary. This condition gives the normal
components of Tp & Tn to be equal zero.

IV. Results and Applications

The programme BIPOLE developed in this
work has been applied to various kinds of
steady state and small signal low frequency
problems of a bipolar n-p-n transistor structure
with a few modifications. The computer
graphics of D.C. quantities and the transitor
characteristics curves are presented for the
purpose of demonstrating the use of BIPOLE.

Fig. 3 shows the doping profile of the
transistor structure shown in Fig, 1. The
surface densities at the contacts are taken to
be NE=1.55568E20, NB=3.11783E18, and
NC=1,15E19. The
epitaxial process Nep is taken to be S.E16.

impurity density of the

The lateral impurity diffusion near the emitter
diffusion mask was assumed 0.8 times normal
diffusion constant.
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IMPURITY DOPING PROFILE

Fig. 3. Doping profile of the transistor with
the surface concentrations NE=
1.55568E20, NB=3.11783E18, NC=
1.15E19, and epitaxial layer Nep=

5.0Ele.

D.C. physical quantities have been obtained
under a variety of bias conditions. The limiting
lifetimes of the SRH-recombination process
are taken to be 100 nsec for holes and 500 nsec
for electrons.
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Fig. 4. Electrostatic potential distribution in
the transistor under the bias condition

VBE=0.85V and VCE=1.20V.

Fig. 4 shows the distribution of the electro-
static potential in the transistor under the bias
conditions VBE=0.85V, VCE=1.20V. .Small
y-direction electrostatic potential gradient due
to the collector resistance is observed at the
neutral collector region. The x-direction
electric field near the centre of collector

region is also observed, causing x-direction

1984%F 3H BTTEEE F20% HL258

currents to the centre. The potential gradient
along the narrow active base region appears
due to base resistance, which may cause a non-
uniform emitter current density distribution.
The highest electric field is located at the
reverse biased base-collector junction, hence
there is no Kirk effect observed under these
bias conditions.

HOLE QUASI-FERMI POTENTIALS (VCE=1. 2V, VBE - 0. 85V)

Fig. 5. Hole quasi-Fermi potential distribution
in the transistor under the bias condi-

tion VBE=0.85V and VCE=1.20V.

ELECTRON QUASI-FERM! POTENTIALS(VCE =1, 2V, VBE =0. 85V)

Fig. 6. Electron quasi-Fermi Potential distribu-
tion in the transistor under the bias
condition VBE=085V and VCE=

1.20V,

Fig. 5 and 6 show hole and electron gquasi-
Fermi potential distributions under the same
bias conditions. Electron quasi-Fermi potential
is zero at the whole emitter region and nearly
constant at the neutral collector region. It,
however, rises steadily at the nonactive base
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HOLE DENSITY DISTRIBUTION (VCE =1. 2V, VBE =0. 85V}

Emitter . .

S5

Fig. 7. Hole carrier density distribution in the
transistor under the bias condition
VBE=0.85 and VCE=1,20V.

ELECTRON DENSITY DISTRIBUTION(VCE —1. 2V, VBE = 0. 85V}
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Fig. 8. Electron carrier density distribution in
the transistor under the bias condition
VBE=0.85V and VCE=1.20V.

region.

Fig. 7 and 8 show hole and electron concen-
tration distributions. One can see the hole
density injected from base to emitter and the
electron density injected from emitter to base
which are rather high-level injection. The
hole concentration increases approximately
linearily at the collector region. One can see
the hole carrier minimum near the  base-
collector junction, representing the depletion
region.

Fig. 9 is a semilog plot of calculated collec-
tor and base currents versus emitter-base
voltage for VCE=1.0V. The knee current and
knee voltage at which the effective emission

10' T T T T
Ly e
O}---- N2
T2 S e
=1
10}
2|
10}
il
-4
—_— 1 L
g '© p
£ e
< g y
Ta /
— ¢
~ 10} / y 1
d ---- WiITHOUT BANDGAP
) ‘ NARROWING
8|, —— WITH BANDGAP
10 NARROWING |
9 Vi
o ‘ i
'VCE=1.OV
sof :
ol \ \ , , .
026 040 035 070 085 100
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Fig. 9. Calculated collector and base currents
versus base-emitter voltage for VCE=
1.0V,

coefficient n is changed from one to two are
1.26 A/cm and 0.73 volts. This knee voltage
is quite similar to V=074V of ref. [20].

The relative importance of bandgap narrow-
ing effect is also shown in Fig. 9 by comparing
the currents with and without bandgap narrow-
ing effect. Fig. 9 clearly shows that bandgap
narrowing must be considered for accurate

26 T T ™ T T
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< 16}
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= 086 E
(=]
5}
5.7 ]
2.6 o
L2
. n N " n
00 02 0.4 06 08 1.0 1.2

Collector Emitter voltage VCE(V)

Fig.10. Calculated collector current versus col-
lector emitter voltage with base current
as the parameter.
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current calculation, Without bandgap narrow-
ing the base current is much underestimated
and current gain will be overestimated,

Fig. 10 presents the calculated output
characteristics for the transistor in common
emitter configuration. The collector current
of saturation region increases with increasing

VCE (see IB=60.4 mA/cm curve). This causes

common emitter current gain to increase
because of lack of the saturation phenomenon
and decrease of the effective base width. One
can calcuated the Early voltages VA from the
slopes of the curves. The calculated Early
voltages for each curve are not equal because
the effective base width is too narrow compar-
ing with the depletion layer of base-collector
junction, They appear 5.0, 5.7, 17.0 volts
for IB=60,4, 42.0, 5.7 mA/cm which corres-
pond to VBE=0.85. 0.82, 0.73 volts.

100 . v : v
VCE= 7V
90 1

80K
701
60+

50+

hfe

40!
30+

201

° g ST S, SN A | :
6® 160 16t e 6% e P a0

Collector current 1. (A/cm)
Fig.11. Calculated small signal low frequency
current gain hg, versus collector current
for various collector-emitter voltages.

Fig. 11 shows the calculated common-
emitter small signal low-frequency current gain
versus collector current with the collector-
emitter voitage as the parameter. One can see
the current gain decreases linearly for higher
collector current than 1. E-2 A/cm due to high-
level injection effect.

Fig. 12 shows the diffusion capacitance
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Fig.12. Calculated emitter and diffusion capa-
citances CE and Cd versus collector
current for base-collector voltage 0.5V.

contribution to the emitter capacitance. As
collector current increases higher than 2 A/cm
the diffusion capacitance is dominant, thereby
giving rise to injection current gain degradation.

V. Conclusion

A programme, called BIPOLE, for the
numerical analysis of two-dimensional n-p-n
bipolar transistors has been developed using
the finite difference equations of the fund-
amental semiconductor equations without
physical restrictions, This programme package
includes the SRH and Auger recombination
processes, the mobility dependences on the
impurity atom density and the electric field
strength, and the band-gap narrowing effect,
but not surface and band-to-band direct recom-
binations,

The finite difference equation formulations
for the basic semiconductor equations are fully
explained, The resulting matrices of the
linearized equations are sparse, symmetric
M-materices. For the solution of the equations
the ICCG method has been employed.

The programme BIPOLE has been applied
to various kinds of the steady-state problems.
Three-dimensional representations of some D.C.
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Physical quantities such as potential and
charge carrier distributions were displayed.

For the examples of applications, the static
and small signal low frequency current gains,
emitter and diffusion capacitances, and input
and output characteristics are calculated.

Furthermore, it has also been made possible
to obtain a deeper physical insight into the
functioning of various kinds of device size and
geometry., The author wish this programme
should provide an interest and an academic
the experienced

exchange opportunity for

semiconductor engineers and lecturers, and
should appeal to the designers of devices and

circuits with IC or discrete devices,
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