• 제목/요약/키워드: method of Lagrange multipliers

검색결과 61건 처리시간 0.019초

속도변환법을 이용한 운동방정식의 시스템자코비안 구성 (Construction of System Jacobian in the Equations of Motion Using Velocity Transformation Technique)

  • 이재욱;손정현;김광석;유완석
    • 대한기계학회논문집A
    • /
    • 제25권12호
    • /
    • pp.1966-1973
    • /
    • 2001
  • The Jacobian matrix of the equations of motion of a system using velocity transformation technique is derived via variation methods to apply the implicit integration algorithm, DASSL. The concept of generalized coordinate partitioning is used to parameterize the constraint set with independent generalized coordinates. DASSL is applied to determine independent generalized coordinates and velocities. Dependent generalized coordinates, velocities, accelerations and Lagrange multipliers are explicitly retained in the formulation to satisfy all of the governing kinematic and dynamic equations. The derived Jacobian matrix of a system is proved to be valid and accurate both analytically and through solution of numerical examples.

자금 제약하에서의 동시조달부품의 최적 구매량 결정 (Optimal Provisioning Quantity Determination of Concurrent Spare Part under the Funds Limitation)

  • 오근태
    • 산업경영시스템학회지
    • /
    • 제20권41호
    • /
    • pp.123-134
    • /
    • 1997
  • In this paper we consider the CSP requirements determination problem of new equipment system. The CSP we deal with in the paper are restricted to the demand-based spare parts. For the newly procured equipment systems, mathematical analyses are made for the system which is constructed with the repairable items to derive the associated CSP requirement determination model in mathematical expression, respectively. Based on these analyses, a mathematical model is derived for making an optimal CSP requirement determination subject to the constraint of satisfying any given funds limitation. We assume that the failure of a part follows a Poisson process. Firstly, the operational availability concept in CSP is defined and the relation between the general system availability and the operational availability is established. Secondly, the problem is formulated as the operational availability maximization problem that should satisfy the funds limitation, and then, using the generalized Lagrange multipliers method, the optimal solution procedure is derived.

  • PDF

운용가용도 제약하에서의 소모성 동시조달부품의 최적구매량 결정 (Optimal Provisioning Quantity Determination of Consumable Concurrent Spare Part under the Availability Limitation)

  • 오근태;김명수
    • 산업경영시스템학회지
    • /
    • 제21권48호
    • /
    • pp.113-122
    • /
    • 1998
  • In this paper we consider the CSP requirements determination problem of new equipment(machine) system. For the newly procured equipment systems, mathematical analyses are made for the system which is constructed with the consumable parts to derive the associated CSP requirement determination model in mathematical expression. Based on these analyses, a mathematical model is derived for making an optimal CSP requirement determination subject to tile constraint of satisfying any given operational availability limitation. We assume that the failure of a part follows a Poisson process. Firstly, the operational availability concept in CSP is defined and the relation between the general system availability and the operational availability is established. Secondly, the problem is formulated as the cost minimization problem that should satisfy the operational availability limitation, and then, using the generalized Lagrange multipliers method, the optimal solution procedure is derived.

  • PDF

운용가용도 제약하에서 소모성부품과 수리순환부품이 혼재된 동시조달부품의 최적구매량 결정 (Optimal Provisioning Quantity Determination of Concurrent Spare Parts including Consumable Items and Repairable Items under the Availability Limitation)

  • 오근태;김명수
    • 산업경영시스템학회지
    • /
    • 제23권59호
    • /
    • pp.53-67
    • /
    • 2000
  • In this paper we consider the CSP requirements determination problem of new equipment(machine) system. For the newly procured equipment systems, mathematical analyses are made for the system which is constructed with the consumable parts and the repairable parts to derive the associated CSP requirement determination model in mathematical expression. Based on these analyses, a mathematical model Is derived for making an optimal CSP requirement determination subject to the constraint of satisfying any given operational availability limitation. We assume that the failure of a part follows a Poisson process and the repair time has an exponential distribution. Firstly, the operational availability concept in CSP is defined and the relation between the general system availability and the operational availability is established. Secondly, the problem is formulated as the cost minimization problem that should satisfy the operational availability limitation, and then, using the generalized Lagrange multipliers method, the optimal solution procedure Is derived.

  • PDF

유연보의 동역학 해석에 대한 선형 및 비선형 유한요소 정식화 (Formulations of Linear and Nonlinear Finite Element for Dynamic Flexible Beam)

  • 윤성호
    • 한국정밀공학회지
    • /
    • 제23권2호
    • /
    • pp.113-121
    • /
    • 2006
  • This paper established the dynamic model of a flexible Timoshenko beam capable of geometrical nonlinearities subject to large overall motions by using the finite element method. Equations of motion are derived by using Hamilton principle and are formulated in terms of finite elements using CO elements in which the nonlinear constraint equations are adjoined to the system using Lagrange multipliers. In the final formulation are presented Coriolis and Gyroscopic forces as well as linear and nonlinear stiffnesses effects for the forthcoming numerical computation.

비선형계량법(非線型計量法)을 이용한 신뢰성(信賴性)의 최적화(最適化) (Reliability Optimization By using a Nonlinear Programming)

  • 이창호
    • 품질경영학회지
    • /
    • 제9권2호
    • /
    • pp.31-36
    • /
    • 1981
  • 점증되고 있는 고신뢰성 제품의 설계에 있어 주어진 선형제약조건 내(內)에서 체계의 신뢰성을 최대화하는 방법을 소개하고 이를 해결하는 비선형계획법을 반복단계로 하여 Computer Programming을 하였다. 단, 본 논문에서 다루는 체계는 병렬중복구조를 갖는 직렬다단계 구조이다. 타당성 검토를 위한 예제를 해결하였으며 Computer Programming은 지면관계로 생략하였다.

  • PDF

A DUAL ITERATIVE SUBSTRUCTURING METHOD WITH A SMALL PENALTY PARAMETER

  • Lee, Chang-Ock;Park, Eun-Hee
    • 대한수학회지
    • /
    • 제54권2호
    • /
    • pp.461-477
    • /
    • 2017
  • A dual substructuring method with a penalty term was introduced in the previous works by the authors, which is a variant of the FETI-DP method. The proposed method imposes the continuity not only by using Lagrange multipliers but also by adding a penalty term which consists of a positive penalty parameter ${\eta}$ and a measure of the jump across the interface. Due to the penalty term, the proposed iterative method has a better convergence property than the standard FETI-DP method in the sense that the condition number of the resulting dual problem is bounded by a constant independent of the subdomain size and the mesh size. In this paper, a further study for a dual iterative substructuring method with a penalty term is discussed in terms of its convergence analysis. We provide an improved estimate of the condition number which shows the relationship between the condition number and ${\eta}$ as well as a close spectral connection of the proposed method with the FETI-DP method. As a result, a choice of a moderately small penalty parameter is guaranteed.

Multiscale analysis using a coupled discrete/finite element model

  • Rojek, Jerzy;Onate, Eugenio
    • Interaction and multiscale mechanics
    • /
    • 제1권1호
    • /
    • pp.1-31
    • /
    • 2008
  • The present paper presents multiscale modelling via coupling of the discrete and finite element methods. Theoretical formulation of the discrete element method using spherical or cylindrical particles has been briefly reviewed. Basic equations of the finite element method using the explicit time integration have been given. The micr-macro transition for the discrete element method has been discussed. Theoretical formulations for macroscopic stress and strain tensors have been given. Determination of macroscopic constitutive properties using dimensionless micro-macro relationships has been proposed. The formulation of the multiscale DEM/FEM model employing the DEM and FEM in different subdomains of the same body has been presented. The coupling allows the use of partially overlapping DEM and FEM subdomains. The overlap zone in the two coupling algorithms is introduced in order to provide a smooth transition from one discretization method to the other. Coupling between the DEM and FEM subdomains is provided by additional kinematic constraints imposed by means of either the Lagrange multipliers or penalty function method. The coupled DEM/FEM formulation has been implemented in the authors' own numerical program. Good performance of the numerical algorithms has been demonstrated in a number of examples.

Topology Optimization for Large-displacement Compliant Mechanisms Using Element Free Galerkin Method

  • Du, Yixian;Chen, Liping
    • International Journal of CAD/CAM
    • /
    • 제8권1호
    • /
    • pp.1-10
    • /
    • 2009
  • This paper presents a topology optimization approach using element-free Galerkin method (EFGM) for the optimal design of compliant mechanisms with geometrically non-linearity. Meshless method has an advantage over the finite element method(FEM) because it is more capable of handling large deformation resulted from geometrical nonlinearity. Therefore, in this paper, EFGM is employed to discretize the governing equations and the bulk density field. The sensitivity analysis of the optimization problem is performed by incorporating the adjoint approach with the meshless method. The Lagrange multipliers method adjusted for imposition of both the concentrated and continuous essential boundary conditions in the EFGM is proposed in details. The optimization mathematical formulation is developed to convert the multi-criteria problem to an equivalent single-objective problem. The popularly applied interpolation scheme, solid isotropic material with penalization (SIMP), is used to indicate the dependence of material property upon on pseudo densities discretized to the integration points. A well studied numerical example has been applied to demonstrate the proposed approach works very well and the non-linear EFGM can obtain the better topologies than the linear EFGM to design large-displacement compliant mechanisms.

Co-rotational 비선형 정식화 및 FETI-local 기법을 결합한 비선형 대용량/다물체 구조 해석 알고리듬 개발 (Computational Algorithm for Nonlinear Large-scale/Multibody Structural Analysis Based on Co-rotational Formulation with FETI-local Method)

  • 조해성;주현식;이영헌;곽민철;신상준;여재익
    • 한국항공우주학회지
    • /
    • 제44권9호
    • /
    • pp.775-780
    • /
    • 2016
  • 본 논문에서는 비선형 다물체 동역학 해석에 적용 가능한 구조해석을 개발하였다. 비선형 구조 해석을 위해 Co-rotational 이론 기반의 유한요소를 개발하였다. 그리고 국부 Lagrange 승수를 활용한 영역분할해석 기법을 적용하여 대용량/다물체 해석이 가능한 구조해석 알고리듬을 개발하였다. 기 개발한 구조 해석은 외팔보 및 다물체 구조에 대한 비선형 정적 해석 예제에 적용하였다. 병렬 계산에 따른 성능 평가는 희박행렬 계산 라이브러리인 PARDISO와 비교하였다. 이를 통해 기 개발 구조해석의 계산 속도 향상을 확인하였다.