• 제목/요약/키워드: meteorological variables

검색결과 405건 처리시간 0.022초

이중편파레이더 시뮬레이터 개발을 위한 2차원 영상우적계 관측자료의 활용가능성 연구 (Study on the Application of 2D Video Disdrometer to Develope the Polarimetric Radar Data Simulator)

  • 김해림;박혜숙;박향숙;박종서
    • 대기
    • /
    • 제24권2호
    • /
    • pp.173-188
    • /
    • 2014
  • The KMA has cooperated with the Oklahoma University in USA to develop a Polarimetric Radar Data (PRD) simulator to improve the microphysical processes in Korea Local Analysis and Prediction System (KLAPS), which is critical for the utilization of PRD into Numerical Weather Prediction (NWP) field. The simulator is like a tool to convert NWP data into PRD, so it enables us to compare NWP data with PRD directly. The simulator can simulate polarimetric radar variables such as reflectivity (Z), differential reflectivity ($Z_{DR}$), specific differential phase ($K_{DP}$), and cross-correlation coefficient (${\rho}_{hv}$) with input of the Drop Size Distribution (DSD) and scattering calculation of the hydrometeors. However, the simulator is being developed based on the foreign observation data, therefore the PRD simulator development reflecting rainfall characteristics of Korea is needed. This study analyzed a potential application of the 2-Dimension Video Disdrometer (2DVD) data by calculating the raindrop axis ratio according to the rain-types to reflect Korea's rainfall characteristics into scattering module in the simulator. The 2DVD instrument measures the precipitation DSD including the fall velocity and the shape of individual raindrops. We calculated raindrop axis ratio for stratiform, convective and mixed rainfall cases after checking the accuracy of 2DVD data, which usually represent the scattering characteristics of precipitation. The raindrop axis ratio obtained from 2DVD data are compared with those from foreign database in the simulator. The calculated the dual-polarimetric radar variables from the simulator using the obtained raindrop axis ratio are also compared with in situ dual-polarimetric observation data at Bislsan (BSL). 2DVD observation data show high accuracies in the range of 0.7~4.8% compared with in situ rain gauge data which represents 2DVD data are sufficient for the use to simulator. There are small differences of axis ratio in the diameter below 1~2 mm and above 4~5 mm, which are more obvious for bigger raindrops especially for a strong convective rainfall case. These differences of raindrop axis ratio between domestic and foreign rainfall data base suggest that the potential use of disdrometer observation can develop of a PRD simulated suitable to the Korea precipitation system.

기상자료(氣象資料)를 이용(利用)한 산불발생확률모형(發生確率模型)의 개발(開發) (Developing Forest Fire Occurrence Probability Model Using Meteorological Characteristics)

  • 최관;한상열
    • 한국산림과학회지
    • /
    • 제85권1호
    • /
    • pp.15-23
    • /
    • 1996
  • 본격적인 산림자원조성시대를 대비하기 위해서는 가장 큰 피해를 주고 있는 산불에 대한 과학적이고 합리적인 산불발생에 관한 예측모형의 개발이 필수적이다. 따라서 본 연구는 이에 대한 현실적인 방안으로서 대구 경상북도지역을 대상으로 하여 기상요인을 이용한 산불발생확률모형을 개발하고자 수행하였다. 이를 위해 먼저 산불발생일의 모든 기상자료들을 검토하여 이들 기상요인과 산화발생빈도와의 함수관계를 파악하여 의미 있는 기상요인을 규명하고, 이와 병행하여 국지적(局地的) 차원(次元)의 기상자료 획득이 현실적으로 불가능하기 때문에, 각 시 군별 산불발생일의 유사정도를 적절한 통계적 기법에 이용하여 정량화(定量化)하고 이를 토대로 조사대상지역 범주화하였다. 그 결과 산불발생에 영향을 미치는 기상요인으로는 상대습도, 일조시간, 강우후 경과일로 밝혀졌으며, 조사대상지역은 대구를 중심으로 한 중남부지역, 안동을 중심으로 한 북부지역, 포항을 중심으로 한 동부해안지역으로 구분되었다. 따라서 구분된 각 지역의 시계열(時系列) 기상자료를 이용하여 logistic과 probit model을 기초로 한 산불발생확률모형이 개발되었다. 모의 실효성을 검정하기 위하여 과거 기상자료를 대입한 결과 상당한 정도의 예측능력이 확인되어, 이를 이용한 효율적인 감시활동과 진화장비의 배치 등 산불예방활동의 효율성을 제고할 수 있을 것으로 기대된다.

  • PDF

서해 조석현상에 따른 국지기상 변화가 수도권 오존농도에 미치는 영향 (Impacts of Local Meteorology caused by Tidal Change in the West Sea on Ozone Distributions in the Seoul Metropolitan Area)

  • 김성민;김유근;안혜연;강윤희;정주희
    • 한국환경과학회지
    • /
    • 제28권3호
    • /
    • pp.341-356
    • /
    • 2019
  • In this study, the impacts of local meteorology caused by tidal changes in the West Sea on ozone distributions in the Seoul Metropolitan Area (SMA) were analyzed using a meteorological model (WRF) and an air quality (CMAQ) model. This study was carried out during the day (1200-1800 LST) between August 3 and 9, 2016. The total area of tidal flats along with the tidal changes was calculated to be approximately $912km^2$, based on data provided by the Environmental Geographic Information Service (EGIS) and the Ministry of Oceans and Fisheries (MOF). Modeling was carried out based on three experiments, and the land cover of the tidal flats for each experiment was designed using the coastal wetlands, water bodies (i.e., high tide), and the barren or sparsely vegetated areas (i.e., low tide). The land cover parameters of the coastal wetlands used in this study were improved in the herbaceous wetland of the WRF using updated albedo, roughness length, and soil heat capacity. The results showed that the land cover variation during high tide caused a decrease in temperature (maximum $4.5^{\circ}C$) and planetary boundary layer (PBL) height (maximum 1200 m), and an increase in humidity (maximum 25%) and wind speed (maximum $1.5ms^{-1}$). These meteorological changes increased the ozone concentration (about 5.0 ppb) in the coastal areas including the tidal flats. The increase in the ozone concentration during high tide may be caused by a weak diffusion to the upper layer due to a decrease in the PBL height. The changes in the meteorological variables and ozone concentration during low tide were lesser than those occurring during high tide. This study suggests that the meteorological variations caused by tidal changes have a meaningful effect on the ozone concentration in the SMA.

데이터 마이닝 기법을 활용한 군용 항공기 비행 예측모형 및 비행규칙 도출 연구 (A Study on the Development of Flight Prediction Model and Rules for Military Aircraft Using Data Mining Techniques)

  • 유경열;문영주;정대율
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제31권3호
    • /
    • pp.177-195
    • /
    • 2022
  • Purpose This paper aims to prepare a full operational readiness by establishing an optimal flight plan considering the weather conditions in order to effectively perform the mission and operation of military aircraft. This paper suggests a flight prediction model and rules by analyzing the correlation between flight implementation and cancellation according to weather conditions by using big data collected from historical flight information of military aircraft supplied by Korean manufacturers and meteorological information from the Korea Meteorological Administration. In addition, by deriving flight rules according to weather information, it was possible to discover an efficient flight schedule establishment method in consideration of weather information. Design/methodology/approach This study is an analytic study using data mining techniques based on flight historical data of 44,558 flights of military aircraft accumulated by the Republic of Korea Air Force for a total of 36 months from January 2013 to December 2015 and meteorological information provided by the Korea Meteorological Administration. Four steps were taken to develop optimal flight prediction models and to derive rules for flight implementation and cancellation. First, a total of 10 independent variables and one dependent variable were used to develop the optimal model for flight implementation according to weather condition. Second, optimal flight prediction models were derived using algorithms such as logistics regression, Adaboost, KNN, Random forest and LightGBM, which are data mining techniques. Third, we collected the opinions of military aircraft pilots who have more than 25 years experience and evaluated importance level about independent variables using Python heatmap to develop flight implementation and cancellation rules according to weather conditions. Finally, the decision tree model was constructed, and the flight rules were derived to see how the weather conditions at each airport affect the implementation and cancellation of the flight. Findings Based on historical flight information of military aircraft and weather information of flight zone. We developed flight prediction model using data mining techniques. As a result of optimal flight prediction model development for each airbase, it was confirmed that the LightGBM algorithm had the best prediction rate in terms of recall rate. Each flight rules were checked according to the weather condition, and it was confirmed that precipitation, humidity, and the total cloud had a significant effect on flight cancellation. Whereas, the effect of visibility was found to be relatively insignificant. When a flight schedule was established, the rules will provide some insight to decide flight training more systematically and effectively.

역전파 신경망 모델을 이용한 기준 작물 증발산량 산정 (Estimation of Reference Crop Evapotranspiration Using Backpropagation Neural Network Model)

  • 김민영;최용훈;수잔 오샤네시;폴 콜레이지;김영진;전종길;이상봉
    • 한국농공학회논문집
    • /
    • 제61권6호
    • /
    • pp.111-121
    • /
    • 2019
  • 작물 증발산량은 수자원 계획 및 관리, 물수지 분석, 작물 관개 계획 및 생산량 추정 등에 널리 활용되고 있으며, 특히 FAO에서 공인한 Penman-Monteith식 (FAO 56-PM)은 잠재 증발산량 산정을 위한 표준방법으로 많이 사용되고 있다. Penman-Monteith식을 이용한 잠재증발산량 산정은 최소온도, 평균온도, 최대온도, 상대습도, 풍속과 일사량인 6가지 항목에 대한 시계열 자료가 필요한데, 결측 또는 미계측된 경우에는 사용이 어려운 단점을 가지고 있다. 따라서, 본 연구에서는 역전파 신경망(BPNN) 모델을 이용해서 6개 미만의 기상항목으로도 잠재증발산량이 추정가능한지를 확인하였다. 여섯 가지 기상항목을 각각 1~6개의 조합으로 입력자료를 구성하고, BPNN 모델을 이용해서 학습, 검증 및 테스트를 한 결과, 입력 자료가 많아질수록 좋은 결과가 산출되었으며, 일사량, 최대온도와 상대습도만으로도 결정계수($R^2$)가 0.94정도로 비교적 높은 예측결과를 얻을 수 있었다. 또한 산정 오차를 줄이고, 항목간의 상관관계를 높이기 위해서는 역전파 신경망 구조의 적절한 선택이 중요한 것으로 확인되었다. 역전파 신경망 모델을 사용하면 요구되는 기상 항목과 데이터의 양에 대한 제약 없이 예측이 가능할 수 있기 때문에 기준 증발산량 산정에 유용하게 활용될 수 있을 것이며 향후 작물 재배를 위한 적정 관개계획 수립에도 유용하게 사용될 것이라 사료된다.

기상청 기후예측시스템(GloSea6) - Part 2: 기후모의 평균 오차 특성 분석 (The KMA Global Seasonal forecasting system (GloSea6) - Part 2: Climatological Mean Bias Characteristics)

  • 현유경;이조한;신범철;최유나;김지영;이상민;지희숙;부경온;임소민;김혜리;류영;박연희;박형식;추성호;현승훤;황승언
    • 대기
    • /
    • 제32권2호
    • /
    • pp.87-101
    • /
    • 2022
  • In this paper, the performance improvement for the new KMA's Climate Prediction System (GloSea6), which has been built and tested in 2021, is presented by assessing the bias distribution of basic variables from 24 years of GloSea6 hindcasts. Along with the upgrade from GloSea5 to GloSea6, the performance of GloSea6 can be regarded as notable in many respects: improvements in (i) negative bias of geopotential height over the tropical and mid-latitude troposphere and over polar stratosphere in boreal summer; (ii) cold bias of tropospheric temperature; (iii) underestimation of mid-latitude jets; (iv) dry bias in the lower troposphere; (v) cold tongue bias in the equatorial SST and the warm bias of Southern Ocean, suggesting the potential of improvements to the major climate variability in GloSea6. The warm surface temperature in the northern hemisphere continent in summer is eliminated by using CDF-matched soil-moisture initials. However, the cold bias in high latitude snow-covered area in winter still needs to be improved in the future. The intensification of the westerly winds of the summer Asian monsoon and the weakening of the northwest Pacific high, which are considered to be major errors in the GloSea system, had not been significantly improved. However, both the use of increased number of ensembles and the initial conditions at the closest initial dates reveals possibility to improve these biases. It is also noted that the effect of ensemble expansion mainly contributes to the improvement of annual variability over high latitudes and polar regions.

MODIS 영상을 이용한 논벼 생산량 추정모형의 적합도 개선을 위한 연구 (An Approach for Improvement of Goodness of Fit on the Estimation of Paddy Rice Yield Using Satellite(MODIS) Images)

  • 김배성;김재환;고성보
    • 한국산학기술학회논문지
    • /
    • 제14권11호
    • /
    • pp.5417-5422
    • /
    • 2013
  • 본 논문은 MODIS 위성 영상을 이용하여 논벼 생산량을 추정하는 모형의 적합도 개선 및 추정모형내 적절한 설명변수를 탐색하고자 수행되었다. 또한 이 연구는 한국에서 논벼 생산량 조사를 위해 위성 영상을 사용하는 방안을 검토하기 위해 수행되었다. 미국, 호주, 일본 등 많은 선진국들은 재배면적 및 생산량 조사와 같은 농업통계를 산출하기 위해 위성 영상을 이용하고 있다. 그러나 위성 영상을 이용한 작물 생산량 조사의 정확성은 아직 충분치 않은 수준이다. 본 연구는 위성 영상을 이용한 논벼 생산량 조사의 정확도를 증대시키기 위한 몇 가지 방법을 검토하고 있다. 많은 작물 중 논벼를 연구대상으로 선정한 이유는 논벼가 다른 작물 보다 재배면적과 작황의 영상 분석이 용이하였기 때문이고, 다양한 위성 영상 중 MODIS 영상을 이용한 것은 한국 논벼 생산량 조사 연구를 위해 보다 적절한 영상을 다수 포함하고 있었기 때문이다. 이 연구에서 등온선에 의해 구분된 논벼로부터 도출된 NDVI지수, 논벼 등숙기의 일조시간, 강우량, 온도 등 기상변수를 이용하여 단수함수가 추정되었다. 단수함수 추정결과, 모형의 적합도(R-squared)는 0.768-0.891를 보였다. 이 연구는 연평균 등온선에 의해 구분된 NDVI지수와 (등숙기) 기상변수가 단수함수 추정에 매우 유용하게 이용될 수 있음을 보이고 있다.

시선속도를 고려한 RBFNN 기반 기상레이더 에코 분류기의 설계 (Design of Meteorological Radar Echo Classifier Based on RBFNN Using Radial Velocity)

  • 배종수;송찬석;오성권
    • 한국지능시스템학회논문지
    • /
    • 제25권3호
    • /
    • pp.242-247
    • /
    • 2015
  • 본 논문은 방사형 기저함수 신경회로망(Radial Basis Function Neural Network) 패턴분류기를 기반으로 강수 에코와 비(非)강수 에코를 분류하는 방법을 제시한다. 강수 에코와 비(非)강수 에코를 분류하기 위하여 기상레이더 자료의 특성을 분석하였다. 이를 기반으로 UF 데이터의 전처리를 실시하여 입력변수(DZ, SDZ, VGZ, SPN, DZ_FR, VR)를 선정 하였고 학습데이터 및 테스트데이터로 구성하였다. 마지막으로, 기상청에서 사용되고 있는 QC 데이터는 제안된 알고리즘의 성능을 비교하기 위해 사용하였다.

서울과 부산지역 기상의 영향을 제거한 오존농도 추세 (Meteorologically Adjusted Ozone Trends in the Seoul and Susan Metropolitan Areas)

  • 김유근;오인보;황미경
    • 한국대기환경학회지
    • /
    • 제19권5호
    • /
    • pp.561-568
    • /
    • 2003
  • Surface ozone concentrations are highly sensitive to meteorological variability. Therefore, in order to reveal the long-term changes in ozone due to the changes in precursor emissions, we need to remove the effects of meteorological fluctuations on the annual distribution of surface ozone. In this paper, the meteorologically adjusted trends of daily maximum surface ozone concentrations in two major Korean cities (Seoul and Busan) are investigated based on ozone data from 11 (Seoul) and 6 (Busan) sites over the period 1992 ∼ 2000. The original time series consisting of the logarithm of daily maximum ozone concentrations are splitted into long-term, seasonal and short-term component using Kolmogorov-Zurbenko (KZ) filter. Meteorological effects are removed from filtered ozone series using multiple linear regression based on meteorologcial variables. The long-term evolution of ozone forming capability due to changes in precursor emission can be obtained applying the KZ filter to the residuals of the regression. The results indicated that meteorologically adjusted long-term daily maximum ozone concentrations had a significant upward trend (Seoul: + 3.02% yr$^{-1}$ , Busan: + 3.45% yr$^{-1}$ ). These changes of meteorologically adjusted ozone concentrations represent the effects of changing background ozone concentrations as well as the more localized changes in emissions.

서울에서의 미세먼지 저감을 위한 인공강수 가능성 진단 (An Assessment of the Effectiveness of Cloud Seeding as a Measure of Air Quality Improvement in the Seoul Metropolitan Area)

  • 송재인;염성수
    • 대기
    • /
    • 제29권5호
    • /
    • pp.609-614
    • /
    • 2019
  • Cloud seeding experiment has been proposed as a way to alleviate severe air pollution problem because, if successful, artificially produced precipitation through cloud seeding could scavenge out some portion of air pollutants. As a first step to verify the practicality of such experiment, seedability of the clouds observed in Seoul is assessed by examining statistical characteristics of some relevant meteorological variables. Analyses of 9 years of Korea Meteorological Agency Seoul station data indicate that as PM10 mass concentration increases, cloud amount, liquid water path, and ice water path decrease, but the difference between temperature and dew point temperature tends to increase. Such finding suggests that cloud seeding becomes less feasible as air pollution becomes more severe in the Seoul metropolitan area, at least in a statistical sense. For some individual severe air pollution events, however, seedable clouds may exist and indeed cloud seeding experiments can be successful. Therefore, detailed investigation on cloud seedability for individual severe air pollution events are highly required to make a concrete assessment of cloud seeding as a way to alleviate severe air pollution problem.