Browse > Article
http://dx.doi.org/10.14191/Atmos.2014.24.2.173

Study on the Application of 2D Video Disdrometer to Develope the Polarimetric Radar Data Simulator  

Kim, Hae-Lim (Radar Analysis Division, Weather Radar Center, Korea Meteorological Administration)
Park, Hye-Sook (Radar Analysis Division, Weather Radar Center, Korea Meteorological Administration)
Park, Hyang Suk (Radar Analysis Division, Weather Radar Center, Korea Meteorological Administration)
Park, Jong-Seo (Radar Analysis Division, Weather Radar Center, Korea Meteorological Administration)
Publication Information
Atmosphere / v.24, no.2, 2014 , pp. 173-188 More about this Journal
Abstract
The KMA has cooperated with the Oklahoma University in USA to develop a Polarimetric Radar Data (PRD) simulator to improve the microphysical processes in Korea Local Analysis and Prediction System (KLAPS), which is critical for the utilization of PRD into Numerical Weather Prediction (NWP) field. The simulator is like a tool to convert NWP data into PRD, so it enables us to compare NWP data with PRD directly. The simulator can simulate polarimetric radar variables such as reflectivity (Z), differential reflectivity ($Z_{DR}$), specific differential phase ($K_{DP}$), and cross-correlation coefficient (${\rho}_{hv}$) with input of the Drop Size Distribution (DSD) and scattering calculation of the hydrometeors. However, the simulator is being developed based on the foreign observation data, therefore the PRD simulator development reflecting rainfall characteristics of Korea is needed. This study analyzed a potential application of the 2-Dimension Video Disdrometer (2DVD) data by calculating the raindrop axis ratio according to the rain-types to reflect Korea's rainfall characteristics into scattering module in the simulator. The 2DVD instrument measures the precipitation DSD including the fall velocity and the shape of individual raindrops. We calculated raindrop axis ratio for stratiform, convective and mixed rainfall cases after checking the accuracy of 2DVD data, which usually represent the scattering characteristics of precipitation. The raindrop axis ratio obtained from 2DVD data are compared with those from foreign database in the simulator. The calculated the dual-polarimetric radar variables from the simulator using the obtained raindrop axis ratio are also compared with in situ dual-polarimetric observation data at Bislsan (BSL). 2DVD observation data show high accuracies in the range of 0.7~4.8% compared with in situ rain gauge data which represents 2DVD data are sufficient for the use to simulator. There are small differences of axis ratio in the diameter below 1~2 mm and above 4~5 mm, which are more obvious for bigger raindrops especially for a strong convective rainfall case. These differences of raindrop axis ratio between domestic and foreign rainfall data base suggest that the potential use of disdrometer observation can develop of a PRD simulated suitable to the Korea precipitation system.
Keywords
Dual-polarimetric radar simulator; axis ratio; T-matrix; 2D video disdrometer; BSL dual-polarimetric radar;
Citations & Related Records
연도 인용수 순위
  • Reference
1 McFarquhar, G. M., and R. List, 1993: The effect of curve fits for the disdrometer calibration on raindrop spectra, rainfall rate, and radar reflectivity. J. Appl. Meteor., 32, 774-782.   DOI
2 Pruppacher, H., and K. V. Beard, 1970: A wind tunnel investigation of the internal circulation and shape of water drops falling at terminal velocity in air. Q. J. Roy. Meteor. Soc., 96, 247-256.   DOI
3 Ryzhkov, A. V., and D. S. Zrnic, 1998: Polarimetric method for ice water content determination. J. Appl. Meteor., 37, 125-134.   DOI
4 Sheppard, B. E., and P. I. Joe, 1994: Comparison of raindrop size distribution measurements by a Joss-Waldvogel disdrometer, a PMS 2DG spectrometer, and a POSSS Doppler radar. J. Atmos. Oceanic Technol., 11, 874-887.   DOI
5 Snyder, J., H. B. Bluestein, D. T. Dawson II, and Y. Jung, 2013: Examining the effect of the vertical wind shear environment on polarimetric signatures in numerically- simulated supercells, 36th Conference on Radar Meteorology, Breckenridge. CO.
6 Tokay, A., D. B. Wolff, K. R. Wolff, and P. Bashor, 2003: Rain gauge and disdrometer measurements during the keys Area Microphysics Project (KAMP). J. Atmos. Oceanic Technol., 20, 1460-1477.   DOI
7 Vivekanandan, J., V. N. Bringi, M. Hagen, and G. Zhang, 1994: Polarimetric radar studies of atmospheric ice particles. IEEE Trans. Geosci. Remote Sens., 32, 1-10.   DOI   ScienceOn
8 Wang, J., B. L. Fisher, and D. B. Wolff, 2008: Estimating rain rates from tipping-bucket rain gauge measurements. J. Atmos. Oceanic Technol., 25, 43-56.   DOI   ScienceOn
9 Capsoni, C., M. D'Amico, and R. Nebuloni, 2001: A multiparameter polarimetric radar simulator. J. Atmos. Oceanic Technol., 18, 1799-1809.   DOI
10 Dawson, Daniel T., Edward R. Mansell, Youngsun Jung, Louis J. Wicker, Matthew R. Kumjian, and Ming Xue, 2014: Low-level ZDR signatures in supercell forward flanks: the role of size sorting and melting of hail. J. Atmos. Sci., 71, 276-299.   DOI
11 Hagen, M., and S. Yuter, 2003: Relations between radar reflectivity, liquid water content, and rainfall rate during the MAPSOP. Q. J. Roy. Meteor. Soc., 129, 477-493.   DOI   ScienceOn
12 Green, A. W., 1975: An approximation for the shapes of large raindrops. J. Appl. Meteor., 14, 1578-1583.   DOI
13 Gunn, R., and G. D. Kinzer, 1949: The terminal velocity of fall for water drops in stagnant air. J. Meteor., 6, 243-248.   DOI
14 Habib, E., W. F. Krajewski, and A. Kruger, 2001: Sampling errors of tipping-bucket rain gauge measurements. J. Hydrol. Eng., 6, 159-166.   DOI   ScienceOn
15 Huang, G. J., V. N. Bringi, and M. Thurai, 2008: Orientation angle distributions of drops after 80-m fall using a 2D video disdrometer. J. Atmos. Oceanic Technol., 25, 1717-1723.   DOI   ScienceOn
16 Jung, Y., G. Zhang, and M. Xue, 2008a: Assimilation of simulated polarimetric radar data for a convective storm using ensemble kalman filter. Part I: Observation operators for reflectivity and polarimetric variable. Mon, Wea. Rev., 136, 2228-2245.   DOI   ScienceOn
17 Jung, Y., M. Xue, G. Zhang, and J. M. Straka, 2008b: Assimilation of simulated polarimetric radar data for a convective storm using ensemble Kalman filter. Part II: Impact of polarimetric data on storm analysis. Mon, Wea. Rev., 136, 2246-2260.   DOI
18 Jung, Y.,M. Xue, and G. Zhang, 2010: Simulations of polarimetric radar signatures of a supercell storm using a two-moment bulk microphysics scheme. J. Appl. Meteor. Climatol., 49, 146-163.   DOI
19 Kruger, A., and W. F. Krajewski, 2002: Two-dimensional video disdrometer. J. Atmos. Sci., 19, 602-617.
20 Jung, Y., M. Xue, and M. Tong, 2012: Ensemble Kalman Filter Analyses of the 29-30 May 2004 Oklahoma Tornadic Thunderstorm using One- and Two-Moment Bulk microphysics Schemes, with verification against polarimetric radar data. Mon, Wea. Rev., 140, 1457-1475.   DOI
21 Atlas, D., R. C. Srivastava, and R. S. Sekkon, 1973: Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys. Space Phys., 2, 1-35.
22 Atlas, D., and C. W. Ulbrich, 1977: Path and area integrated rainfall measurement by microwave attenuation in the 1-3 cm band. J. Appl. Meteor., 16, 327-332.   DOI
23 Brandes, E. A., G. Zhang, and J. Vivekanandan, 2002: Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. J. Appl. Meteor., 41, 674-685.   DOI
24 Brandes, E. A., G. Zhang, and J. Vivekanandan, 2004: Comparison of polarimetric radar drop size distribution retrieval algorithms. J. Atmos. Oceanic Technol., 21, 584-598.   DOI
25 Thurai, M., and V. N. Bringi, 2005: Drop Axis Ratios from a 2D Video Disdrometer. J. Atmos. Oceanic Technol., 22, 966-978.   DOI   ScienceOn
26 Zhang, G., J. Vivekanandan, and E. Brandes, 2001: A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Trans. Geosci. Remote Sens., 39, 830-841.   DOI   ScienceOn
27 Handwerker, J., and W. Straub, 2011: Optimal Determina tion of Parameters for Gamma-Type Drop Size Distributions Based on Moments. J. Atmos. Oceanic Technol., 28, 513-529.   DOI   ScienceOn