• Title/Summary/Keyword: meteorological disaster

Search Result 247, Processing Time 0.029 seconds

Effects of Storm Waves Caused by Typhoon Bolaven (1215) on Korean Coast: A Comparative Analysis with Deepwater Design Waves

  • Taegeon Hwang;Seung-Chul Seo;Hoyeong Jin;Hyeseong Oh;Woo-Dong Lee
    • Journal of Ocean Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.149-163
    • /
    • 2024
  • This paper employs the third-generation simulating waves nearshore (SWAN) ocean wave model to estimate and analyze storm waves induced by Typhoon Bolaven, focusing on its impact along the west coast and Jeju Island of Korea. Utilizing reanalyzed meteorological data from the Japan Meteorological Agency meso scale model (JMA-MSM), the study simulated storm waves from Typhoon Bolaven, which maintained its intensity up to high latitudes as it approached the Korean Peninsula in 2012. Validation of the SWAN model against observed wave data demonstrated a strong correlation, particularly in regions where wind speeds exceeded 20 m/s and wave heights surpassed 5 m. Results indicate significant storm wave heights across Jeju Island and Korea's west and southwest seas, with coastal grid points near islands recording storm wave heights exceeding 90% of the 50-year return period design wave heights. Notably, specific grid points near islands in the northern West Sea and southwest Jeju Island estimated storm wave heights at 90.22% and 91.48% of the design values, respectively. The paper highlights the increased uncertainty and vulnerability in coastal disaster predictions due to event-driven typhoons and emphasizes the need for enhanced accuracy and speed in typhoon wave predictions amid the escalating climate crisis.

The Climatological Regional Characteristics of the Occurrence of Extraordinary Temperature Events Associated with Cropcultivation (농작물 재배와 관련된 이상기온 출현 일수의 기후학적 지역 특성)

  • Lee, Jae-Gyoo;Kim, Yu-Jin;Jeong, Sun-Hee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.3
    • /
    • pp.157-172
    • /
    • 2010
  • Using 61 observation data of the recent 30 years from 1979 to 2008, we have identified the areas which had climatologically frequent occurrence of extraordinary low and high temperature leading to meteorological disasters. The station of the highest temperature deviation was Gangneungduring the period of April through July. Furthermore, the eastern coast region including Gangneung recorded the largest amplitude of temperature deviation in Korea, showing the climatological evidence that the temporal variation was the largest. During the period of April to October, most of the days with extraordinary high temperature were found in April. The regionswith more than 30days of extraordinary high temperature werethe eastern and western coast regions. Thus, special attention to prevent the meteorological disaster related to extraordinary high temperature is required in the coast regions particularly during April. Meanwhile, further attention to prevent the disaster related to extraordinary low temperature is required in Gangwon inland, Chungcheong inland, and the southern province especially in August.

APPLYING ENTERPRISE GIS TO DISASTER MANAGEMENT AT KANGWON PROVINCE

  • Yoon, Hoon-Joo;Ryu, Joong-Hi;Kim, Jung-Dai;Park, Hong-Gi
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.9 no.2 s.18
    • /
    • pp.29-36
    • /
    • 2001
  • The purpose of this paper is to describe the Disaster Management System Development of Enterprise GIS at the Kangwon Province in Korea. This project is included into 'the Kangwon Enterprise GIS 21 plan'. The Division of Disaster Management is in the middle of the 2-year project of the Disaster Management System development, appropriate for business performed at the Departments of Forestry, Culture, Environment, Tourism, etc. At the 1st phase of CIS implementation, for more than half a year we focused on the necessity of management of disasters. In the planning process, we needed long-term information on the whole area of Kangwon. In the assessment and response processes, we needed real-time data from Korean Meteorological Administration and other agencies. All the above information was carefully studied and referred to. ESRI's new GIS technologies solve the natural hazard/disaster problems. For example, hazardous materials routing often needs to be found the least expensive path through a roadway network. In the circumstances given, we can choose the departure point and destination of the vehicle, which carries the materials. It's also possible to minimize overall risk and costs of disaster problems by making a plan of people and possessions evacuation from the disaster area in short time limits. We can meet all the above goals using the latest ESRI's technologies.

  • PDF

Developing Forecast Technique of Landslide Hazard Area by Integrating Meteorological Observation Data and Topographical Data -A Case Study of Uljin Area- (기상과 지형자료를 통합한 산사태 위험지 예측 기법 개발 -울진지역을 대상으로-)

  • Jo, Myung-Hee;Jo, Yun-Won
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.2
    • /
    • pp.1-10
    • /
    • 2009
  • Recently the large scale of forest disaster such as landslide and forest fire gives a very bad impact on not only forest ecosystem but also farm business so that it has became the main issue of environmental problems. In this study, the landslide hazard area forecast method was developed by considering not only the topographic thematic maps based on GIS and satellite images but also amount of rainfall data, which are very important factors of landslide. Uljin-gun was selected as the study area and the GIS weight score and overlay analysis were applied to topographical map and meteorological observation map. Finally the landslide area distribution map was constructed by considering the evaluation criteria. Also, the accuracy could be acquired by comparing the landslide hazard area forecast map and real damaged area extracted from satellite image.

  • PDF

EVALUATION OF SEA FOG DETECTION USING A REMOTE SENSED DATA COMBINED METHOD

  • Heo, Ki-Young;Ha, Kyung-Ja;Kim, Jae-Hwan;Shim, Jae-Seol;Suh, Ae-Sook
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.294-297
    • /
    • 2007
  • Steam and advection fogs are frequently observed in the Yellow Sea located between Korea and China during the periods of March-April and June-July respectively. This study uses the remote sensing (RS) data for monitoring sea fog. Meteorological data obtained from the Ieodo Ocean Research Station provided an informative synopsis for the occurrence of steam and advection fogs through a ground truth. The RS data used in this study was GOES-9, MTSAT-1R images and QuikSCAT wind data. A dual channel difference (DCD) approach using IR and near-IR channel of GOES-9 and MTSAT-1R satellites was applied to estimate the extension of the sea fog. For the days examined, it was found that not only the DCD but also the texture-related measurement and the weak wind condition are required to separate the sea fog from the low cloud. The QuikSCAT wind is used to provide a weak wind area less than threshold under stable condition of the surface wind around a fog event. The Laplacian computation for a measurement of the homogeneity was designed. A new combined method of DCD, QuikSCAT wind speed and Laplacian was applied in the twelve cases with GOES-9 and MTSAT-1R. The threshold values for DCD, QuikSCAT wind speed and Laplacian are -2.0 K, 8 m $s^{-1}$ and 0.1, respectively. The validation methods such as Heidke skill score, probability of detection, probability of false detection, true skill score and odds ratio show that the new combined method improves the detection of sea fog rather than DCD method.

  • PDF

ROC evaluation for MLP ANN drought forecasting model (MLP ANN 가뭄 예측 모형에 대한 ROC 평가)

  • Jeong, Min-Su;Kim, Jong-Suk;Jang, Ho-Won;Lee, Joo-Heon
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.10
    • /
    • pp.877-885
    • /
    • 2016
  • In this study, the Standard Precipitation Index(SPI), meteorological drought index, was used to evaluate the temporal and spatial assessment of drought forecasting results for all cross Korea. For the drought forecasting, the Multi Layer Perceptron-Artificial Neural Network (MLP-ANN) was selected and the drought forecasting was performed according to different forecasting lead time for SPI (3) and SPI (6). The precipitation data observed in 59 gaging stations of Korea Meteorological Adminstration (KMA) from 1976~2015. For the performance evaluation of the drought forecasting, the binary classification confusion matrix, such as evaluating the status of drought occurrence based on threshold, was constituted. Then Receiver Operating Characteristics (ROC) score and F score according to conditional probability are computed. As a result of ROC analysis on forecasting performance, drought forecasting performance, of applying the MLP-ANN model, shows satisfactory forecasting results. Consequently, two-month and five-month leading forecasts were possible for SPI (3) and SPI (6), respectively.

A Remote Sensed Data Combined Method for Sea Fog Detection

  • Heo, Ki-Young;Kim, Jae-Hwan;Shim, Jae-Seol;Ha, Kyung-Ja;Suh, Ae-Sook;Oh, Hyun-Mi;Min, Se-Yun
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.1
    • /
    • pp.1-16
    • /
    • 2008
  • Steam and advection fogs are frequently observed in the Yellow Sea from March to July except for May. This study uses remote sensing (RS) data for the monitoring of sea fog. Meteorological data obtained from the Ieodo Ocean Research Station provided a valuable information for the occurrence of steam and advection fogs as a ground truth. The RS data used in this study were GOES-9, MTSAT-1R images and QuikSCAT wind data. A dual channel difference (DCD) approach using IR and shortwave IR channel of GOES-9 and MTSAT-1R satellites was applied to detect sea fog. The results showed that DCD, texture-related measurement and the weak wind condition are required to separate the sea fog from the low cloud. The QuikSCAT wind data was used to provide the wind speed criteria for a fog event. The laplacian computation was designed for a measurement of the homogeneity. A new combined method, which includes DCD, QuikSCAT wind speed and laplacian computation, was applied to the twelve cases with GOES-9 and MTSAT-1R. The threshold values for DCD, QuikSCAT wind speed and laplacian are -2.0 K, $8m\;s^{-1}$ and 0.1, respectively. The validation results showed that the new combined method slightly improves the detection of sea fog compared to DCD method: improvements of the new combined method are $5{\sim}6%$ increases in the Heidke skill score, 10% decreases in the probability of false detection, and $30{\sim}40%$ increases in the odd ratio.

On the Linkage Between Irrigation Facilities and Rice Production Under Drought Events (가뭄사상 및 농업수리시설물이 쌀 생산량에 미치는 영향에 대한 상관 분석)

  • Woo, Seung-Beom;Nam, Won-Ho;Jeon, Min-Gi;Yoon, Dong-Hyun;Kim, Taegon;Sung, Jae-Hoon;Kim, Han-Joong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.5
    • /
    • pp.95-105
    • /
    • 2021
  • Drought is a disaster that causes prolonged and wide scale damage. Recently, the severity and frequency of drought occurrences, and drought damage have been increased significantly due to climate change. As a result, a quantitative study of drought factors is needed to better understand and prevent future droughts. In the case of agricultural drought, several existing studies examine the economic damage caused by droughts and their causes, but these studies are not well suited to estimating crop-oriented agricultural drought damage and the factors that absolutely affect agricultural drought. This study determines which factors most affect agricultural drought. It examines meteorological factors and those related to agricultural water supplied by irrigation facilities. Rice paddy production per unit area is lower than the average from the last two years where agricultural drought occurred. We compare the relative frequency of agricultural drought impacts with irrigation facilities, effective reservoir storage, the number of water supply facilities, and the meteorological drought index such as Standardized Precipitation Index (SPI). To identify factors that affect agricultural drought, we correlate rice paddy production anomalies with irrigation water supply for the past two years. There was a high positive correlation between rice paddy production and irrigation water usage, and there was a low or moderate negative correlation between rice paddy production anomalies compared to the average of the past two years and SPI. As a result, agricultural water supply by irrigation facilities was judged to be more influential than meteorological factors in rice paddy production. This study is expected to help local governments establish policies related to agricultural drought response.

Multivariable Integrated Evaluation of GloSea5 Ocean Hindcasting

  • Lee, Hyomee;Moon, Byung-Kwon;Kim, Han-Kyoung;Wie, Jieun;Park, Hyo Jin;Chang, Pil-Hun;Lee, Johan;Kim, Yoonjae
    • Journal of the Korean earth science society
    • /
    • v.42 no.6
    • /
    • pp.605-622
    • /
    • 2021
  • Seasonal forecasting has numerous socioeconomic benefits because it can be used for disaster mitigation. Therefore, it is necessary to diagnose and improve the seasonal forecast model. Moreover, the model performance is partly related to the ocean model. This study evaluated the hindcast performance in the upper ocean of the Global Seasonal Forecasting System version 5-Global Couple Configuration 2 (GloSea5-GC2) using a multivariable integrated evaluation method. The normalized potential temperature, salinity, zonal and meridional currents, and sea surface height anomalies were evaluated. Model performance was affected by the target month and was found to be better in the Pacific than in the Atlantic. An increase in lead time led to a decrease in overall model performance, along with decreases in interannual variability, pattern similarity, and root mean square vector deviation. Improving the performance for ocean currents is a more critical than enhancing the performance for other evaluated variables. The tropical Pacific showed the best accuracy in the surface layer, but a spring predictability barrier was present. At the depth of 301 m, the north Pacific and tropical Atlantic exhibited the best and worst accuracies, respectively. These findings provide fundamental evidence for the ocean forecasting performance of GloSea5.

A Study on the Meteorological Disaster in Korean Waters (기상재해연구-태풍과 해난-)

  • Park, Jong-Gil;Kim, Yu-Geun;An, Yeong-Hwa
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.27 no.1
    • /
    • pp.56-63
    • /
    • 1991
  • This paper aims to describe the relation between the weather condition, especially typhoon and a shipwreck in Korean waters. For this study, it was investigated the statistical characteristics of a shipwreck due to the weather, pressure patterns governing the shipwreck in Korean waters. and the relation between the intensity of typhoon and the amount of a disaster. The results are summarized as follows: 1) The monthly occurrence frequency of a shipwreck was the heighest in July followed by February, March in descending order. 2) The pressure patterns governing the shipwreck were classified broadly into six types and pressure pattern which had most occurrence frequency of a shipwreck was Type V and then cames Type I, Type III and type IV in that order. 3) Occurence frequency of a shipwreck and the amount of a kinetic energy of typhoon have nothing to do with each other. In case of Wind-Typhoon that brought more a strong wind than a heavy rainfall, there were seriously affected ships and buildings by the wind.

  • PDF