• Title/Summary/Keyword: metamaterials

Search Result 92, Processing Time 0.027 seconds

Applications of metamaterials: Cloaking, Photonics, and Energy Harvesting

  • Kim, Kyoungsik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.77.2-77.2
    • /
    • 2015
  • Recently, metamaterials attracted much attention because of the potential applications for superlens, cloaking and high precision sensors. We developed several dielectric metamaterials for enhancing antireflection or light trapping capability in solar energy harvesting devices. Colloidal lithography and electrochemical anodization process were employed to fabricate self-assembed nano- and microscale dielectric metamaterials in a simple and cost-effective manner. We improved broadband light absorption in c-Si, a-Si, and organic semiconductor layer by employing polystyrene (PS) islands integrated Si conical-frustum arrays, resonant PS nanosphere arrays, and diffusive alumina nanowire arrays, respectively. We also demonstrated thin metal coated alumina nanowire array which is utilized as an efficient light-to-heat conversion layer of solar steam generating devices. The scalable design and adaptable fabrication route to our light management nanostructures will be promising in applications of solar energy harvesting system. On the other hands, broadband invisible cloaks, which continuously work while elastically deforming, are developed using smart metamaterials made of photonic and elastic crystals. A self-adjustable, nearly lossless, and broadband (10-12GHz) smart meatamaterials have great potentials for applications in antenna system and military stealth technology.

  • PDF

하이퍼볼릭 메타물질: 깊은 서브파장 나노포토닉스를 위한 신개념 플랫폼

  • No, Jun-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.78-78
    • /
    • 2015
  • Metamaterials, artificially structured nanomaterials, have enabled unprecedented phenomena such as invisibility cloaking and negative refraction. Especially, hyperbolic metamaterials also known as indefinite metamaterials have unique dispersion relation where the principal components of its permittivity tensors are not all with the same signs and magnitudes. Such extraordinary dispersion relation results in hyperbolic dispersion relations which lead to a number of interesting phenomena, such as super-resolution effect which transfers evanescent waves to propagating waves at its interface with normal materials and, the propagation of electromagnetic waves with very large wavevectors comparing they are evanescent waves and thus decay quickly in natural materials. In this abstract, I will focus discussing our efforts in achieving the unique optical property overcoming diffraction limit to achieve several extraordinary metamaterials and metadevices demonstration. First, I will present super-resolution imaging device called "hyperlens", which is the first experimental demonstration of near- to far-field imaging at visible light with resolution beyond the diffraction limit in two lateral dimensions. Second, I will show another unique application of metamaterials for miniaturizing optical cavity, a key component to make lasers, into the nanoscale for the first time. It shows the cavity array which successfully captured light in 20nm dimension and show very high figure of merit experimentally. Last, I will discuss the future direction of the hyperbolic metamaterial and outlook for the practical applications. I believe our efforts in sub-wavelength metamaterials having such extraordinary optical properties will lead to further advanced nanophotonics and nanooptics research.

  • PDF

Passive seismic protection systems with mechanical metamaterials: A current review

  • Guevara-Corzo, Jeffrey J.;Begambre-Carrillo, Oscar J.;Garcia-Sanchez, Jesus A.;Sanchez-Acevedo, Heller G.
    • Structural Engineering and Mechanics
    • /
    • v.82 no.4
    • /
    • pp.417-434
    • /
    • 2022
  • In this work, a review of mechanical metamaterials and seismic protection systems that use them is carried out, focusing on passive protection systems. During the last years, a wide variety of classical systems of seismic protection have demonstrated to be an effective and practical way of reducing the seismic vulnerability of buildings, maintaining their health and structural integrity. However, with the emergence of metamaterials, which allow obtaining uncommon mechanical properties, new procedures and devices with high performance have been developed, reducing the seismic risk through novel approaches such as: seismic shields and the redirection of seismic waves; the use of stop band gaps and the construction of buried mass resonators; the design of pentamodal base isolators. These ideas are impacting traditional areas of structural engineering such as the design and building of highly efficient base isolation systems. In this work, recent advances in new seismic protection technologies and researches that integrate mechanical metamaterials are presented. A complete bibliometric analysis was carried out to identify and classify relevant authors and works related with passive seismic protection system based on mechanical metamaterial (pSPSmMMs). Finally, possible future scenarios for study and development of seismic isolators based on mechanical metamaterials are shown, identifying the relevant topics that have not yet been explored, as well as those with the greatest potential for future application.

Design and Manufacturing of Mechanical Metamaterials: A Review (기계적 메타물질 설계 및 제조방안)

  • Kim, Min-Kyeom;Kim, Seunghyun;Yun, Jae-Won;Jeong, Hyo Gyun;Kwak, Min-Jun;Ahn, Yea-Lin;Park, Chan-Wook;Kim, Youn-Chul;Suhr, Jonghwan
    • Composites Research
    • /
    • v.34 no.4
    • /
    • pp.199-211
    • /
    • 2021
  • As an additive manufacturing achieves technological advances, it enables to manufacture complex structures with saving a cost and time. Therefore, metamaterials, which has geometric complexity, have gradually gathered attention due to the unprecedented properties: the unprecedented mechanical, thermal, electromagnetic, and optical properties. The metamaterials could exhibit a high potential in engineering applications, and thus it has been steadily investigated to design or/and develop novel metamaterials. Here, mechanical metamaterials, which had been reported, were reviewed to suggest the way to design and fabricate the metamaterials for industrial applications.

Investigation of Sensitivity Distribution in THz Metamaterials Using Surface Functionalization

  • Cha, Sung Ho;Park, Sae June;Ahn, Yeong Hwan
    • Current Optics and Photonics
    • /
    • v.3 no.6
    • /
    • pp.566-570
    • /
    • 2019
  • To investigate dependence of the sensitivity of THz metamaterials on the position of target dielectric materials, we functionalized the metamaterial gap with an adhesive polymer. A shift in resonance frequency occurs when polystyrene microbeads are deposited in the gap of the metamaterial's metal resonator pattern, while little change is observed when they are deposited on other areas of the metasurface. A two-dimensional mapping of the sensitivity, with a grid size of 1 ㎛, is obtained from a finite-difference time-domain simulation: The frequency shift is displayed as a function of the position of a target dielectric cube. The resulting sensitivity distribution clearly reveals the crucial role of the gap in sensing with metamaterials, which is consistent with the electric field distribution near the gap.

Accurate Measurement of THz Dielectric Constant Using Metamaterials on a Quartz Substrate

  • Park, Sae June;Ahn, Yeong Hwan
    • Current Optics and Photonics
    • /
    • v.1 no.6
    • /
    • pp.637-641
    • /
    • 2017
  • We present dielectric constant measurements of thin films using THz metamaterials fabricated on a quartz substrate. The resonance shifts of the metamaterials exhibit saturation behavior with increasing film thickness. The saturation frequency shift varies with the real part of the dielectric constant, from which the numerical expression for the particular metamaterial design was extracted. We first performed finite-difference time-domain simulations to find an explicit relationship between the saturated frequency shift and the dielectric constant of a thin film, which was confirmed by the experimental results from conventional techniques. In particular, the quartz substrate enables us to determine their values more accurately, because of its low substrate index. As a result, we extracted the dielectric constants of various films whose values have not been addressed previously without precise control of the film thickness.

Wave Propagation Characteristics of Acoustic Metamaterials with Helmholtz Resonators (헬름홀츠 공명기들로 구성된 음향 메타물질의 파동전파 특성)

  • Kwon, Byung-Jin;Jo, Choonghee;Park, Kwang-Chun;Oh, Il-Kwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.2
    • /
    • pp.167-175
    • /
    • 2013
  • The wave propagation characteristics of an acoustic metamaterial composed of periodically repeated one-dimensional Helmholtz resonator array was investigated considering the effects of dimensional changes of the resonator geometry on the transmission coefficient and band gap. The effective impedance and transmission coefficient of the acoustic metamaterials are obtained based on the acoustic transmission line method. The designed acoustic metamaterials exhibit band gaps and negative bulk modulus that are non-existent properties in the nature. The band gap of the acoustic metamaterial is strongly dependent on the geometry parameters of Helmholtz resonators and lattice spacing. Also, a new type of metamaterial that is periodically constructed with two different resonators was designed to open the local resonance band gap without change of Bragg scattering.

Experimental Investigation of R(ω), T(ω) and L(ω) for Multi-Layer SRRs and Wires Metamaterials

  • Luo, Hao;Wang, Xian;Liao, Zhangqi;Wang, Tao;Gong, Rongzhou
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.3
    • /
    • pp.186-189
    • /
    • 2010
  • Reflection(R($\omega$)), transmission(T($\omega$)) and loss(L($\omega$)) characteristics of multi-layer metamaterials are investigated experimentally in free space with the incident EM waves perpendicular to the substrate plane. The sample is made of split-ring resonators(SRRs) and wires which are the typical model of metamaterials. The R($\omega$) and T($\omega$) of multi-layer metamaterials have been calculated from the measured S-parameters. In this paper, we got the impedance-matched result according to the curves of R($\omega$), meanwhile the T($\omega$) decreased with increasing number of layers. At last, we attained the result that the L($\omega$) gets to nearly 98% around 8 GHz, with R($\omega$)=T($\omega$)=0. The design presented in this paper achieves experimented loss near unity.

Analysis of Radar Cross Section for Naval Vessels with Metamaterials and Radar Absorbing Materials (메타물질 및 전파흡수체를 적용한 함정의 레이다 반사면적 해석)

  • Hwang, Joon-Tae;Hong, Suk-Yoon;Kwon, Hyun-Wung;Kim, Jong-Chul;Song, Jee-Hun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.6
    • /
    • pp.737-743
    • /
    • 2015
  • This paper are mainly focusing on the facts influencing on RCS reductions, appling radar absorbing materials by using RCS contributions of elements and appling a metamaterials which is high-tech radar absorbing materials. RCS analysis results are given for a simplified ship model, with radar absorbing materials and metamaterials cause RCS reduction in terms of mean values.